簡易檢索 / 詳目顯示

研究生: 翁源泰
Yuan-Tai Wong
論文名稱: 四足機器人地形適應之即時控制
Real-Time Terrain Adaptation Control for Quadruped Robot
指導教授: 吳忠霖
John-Ling Wu
口試委員: 薛文証
Wen-Jeng Hsueh
莊華益
Hua-Yi Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 110
中文關鍵詞: 抬腳軌跡步態步伐軌跡規劃四足機器人靜態穩定度地形適應控制法
外文關鍵詞: Swing trajectory, Terrain adaptive control method, Gait, Gait trajectory planning, Static stability, Quadruped robot
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文以四足機器人行走步伐的規劃,以及地形適應控制法為主軸進行研究與實現,以符合靜態穩定度的基本步伐為基礎,透過本文所提出的地形適應控制法以及感測器的回授判斷,使四足機器人能在未知地形上穩定的行走。
在步伐軌跡規劃方面,以最常用的波浪步態為主,並用靜態穩定度的圖解法以及數值法分析步態,以及選用橢圓形來設計抬腳軌跡。地形適應控制法方面,主要是針對各種地形提出控制策略,再從感測器獲得未知地形的資訊,使其能配合地形的變化調整姿態,穩定而順利的行走。
經由實驗結果,驗證本文研究之四足機器人,具備地形適應的能力,透過本文所提出的地形適應控制法,使四足機器人能夠在未知地形保持穩定,且能夠自行穿越未知地形上的障礙物,證明本文所提出的地形適應控制法在四足機器人之可行性。


In this paper, we base on the principle of terrain adaptive control method and the walking gait for a quadruped robot to realized standard gait and static stability of robot. Through the terrain adaptive control method and the judgment of sensor feedback, the robot can walk steadily on unknown terrain.
In planning of gait trajectory, the most commonly method is wave gait. And using the graphic method of static stability and numerical methods to analyzed gait and the swing trajectory which is a kind of oval type. In the terrain adaptive control method, we adopted strategy for a variety of terrain and retrieve the information of the unknown terrain from the sensor. It provides the possibility for the robot automatically transforming the gait according to the terrain information. Then, robot can walk steadily.
We have successfully developed the method for the ability of terrain adaptation of quadruped robot. Through the terrain adaptive control method present in the paper, the robot can keep steady while walking in the unknown terrain, and cross over obstacles on the terrain. The terrain adaptive control method aims at controlling the behavior of quadruped robot.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 1.3 論文架構 3 第二章 四足機器人機電系統 4 2.1 機構系統 5 2.2.1 頭部機構 5 2.2.2 腳部機構 6 2.2 電控系統 7 2.2.1 伺服機 7 2.2.2 ARM9主控系統 9 2.2.3 無線藍芽通訊模組 15 2.2.4 智慧型手機 19 2.3 感測系統 20 2.3.1 三軸加速度計感測器模組 20 2.3.2 三軸陀螺儀感測器模組 22 第三章 步態軌跡規劃 25 3.1 步態行為之簡介 25 3.2 工作係數 29 3.3 步態軌跡路徑 30 3.4 靜態穩定度 33 3.4.1 圖解法 34 3.4.2 數值法 36 3.5 運動方程式推導 37 3.5.1 正向運動學推導 38 3.5.2 反向運動學推導 41 3.6 步態流程設計 45 3.6.1 前進步伐流程 45 3.6.2 轉彎步伐流程 47 第四章 地形適應控制法 48 4.1 姿態描述 48 4.2 平坦地形控制策略 54 4.3 斜坡地形控制策略 54 4.4 凹凸與海綿地形控制策略 56 第五章 實驗數據與結果 66 5.1 平坦地形實驗 66 5.2 斜坡地形實驗 70 5.3 凹凸地形實驗 79 5.4 海綿地形實驗 86 第六章 結論與未來展望 93 6.1 結論 93 6.2 未來展望 94 參考文獻 95

[1]E. Muybridge, Animals in Motion, New Dover Edition, Dover Publications, Inc., New York(1957)
[2]R. B. McGhee, “Finite state control of quadruped locomotion”, SIMULATION, 9(3), pp. 135-140(1967)
[3]C. D. Zhang, S. M. Song, “Turning gait of a quadrupedal walking machine”, Proceeding of IEEE International Conference on Robotics and Automation, pp. 2106-2113(1991)
[4]B. S. Lin, S. M. Song, “Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine”, Journal of Robotics Systems, vol. 18, pp. 367-372(1993)
[5]E. Garcia, J. Estremera, “A classification of stability margins for walking robots”, In Proceedings of the International conference on Climbing and Walking Robots, pp. 205-212(2002)
[6]S. Hirose, O. Kunieda, “Generalized Standard Foot Trajectory for a Quadruped Walking Vehicle”, International Journal of Robotics Research, Vol. 10, No 1, pp.3-12(1991)
[7] S. Masakado, T. Ishii, K. Ishii, “A gait-transition method for a quadruped walking robot”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 1, art. No. MD1-04, pp. 432-437(2005)
[8]D. J. Todd, “WALKING MACHINES AN INTRODUCTION TO LEGGED ROBOTS”, Kogan Page(1985)
[9]P. Junmin, C. Junshig, “Study of quadruped Walking Robot Climbing and Walking Down Slope”, IEEE/RSJ International Workshop on Intelligent Robots and System IROS 91, Nov.3-5, 1991, Osaka, Japan. IEEE Cat. No. 91TH0375-6.
[10]吳學書,“四足關節型步行機器人之步態研究”,碩士論文,國立 中央大學,桃園(1993)
[11]A. Mahajan, F. Figueroa, “FOUR-LEGGED INTELLIGENT MOBILE AUTONOMOUS ROBOT”, Robotics & Computer-Integrated Manufacturing, Vol. 13, No 1,pp. 51-61(1997)
[12]R. B. McGhee, A. A. Frank, “On the Stability Properties of Quadruped Creeping Gaits”, Mathematical Biosciences, Vol. 3, No. 1-2, pp. 331-351(1968)
[13]J. K. Lee, S. M. Song, “A study of instantaneous kinematics of walking machines”, International Journal of Robotics & Automation, Vol. 5, No. 3, pp. 131-138(1990)
[14]陳玉崗,“單動力源四足步行機器人之設計”,碩士論文,國立成功大學,台南(2003)
[15]S. C. Byoung, M. S. Shin, “Fully automated obstacle-crossing gaits for walking machines”, IEEE Transactions on Systems, man, and cybernetics, Vol. 18, No. 6, pp. 952-964(1988)
[16]蔡民祥,“六腳機械載具之設計與動態分析”,碩士論文,國立中央大學,桃園(2003)
[17]李青峰,“四足步行機器人之設計與動態分析”,碩士論文,國立中央大學,桃園(2004)
[18]黃啟育,“模組化4+2足步行機械步態規劃”,碩士論文,國立中山大學,高雄(2001)
[19]王證凱,“仿生四足機器人在障礙路面的步伐規劃與實驗”,碩士論文,國立交通大學,新竹(2006)
[20]謝明達,“四足機器人自動充電系統”,碩士論文,國立臺灣科技大學,台北(2007)
[21]詹政邦,“分散式控制系統在二足機器人上之實現”,碩士論文,國立臺灣科技大學,台北(2008)
[22]王家駿,“機器寵物狗之設計與模擬系統研究”,碩士論文,國立臺灣科技大學,台北(2008)
[23]曾俊融,“ANFIS 應用於四足機器人跨越非連續河石地形路徑規劃之研究”,碩士論文,國立交通大學,新竹(2009)
[24]鄭景文,“娛樂型機器狗的設計與實現”,碩士論文,國立臺灣科技大學,台北(2009)
[25]吳正家,“四足機器人步行運動控制”,碩士論文,國立臺灣科技大學,台北(2010)

無法下載圖示 全文公開日期 2017/07/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE