簡易檢索 / 詳目顯示

研究生: 李庭官
Ting-kuan Lee
論文名稱: 設計具最佳操控性、旋轉性或最大工作空間之六自由度等向性並聯式機器人
The Designs of 6-DOF Isotropic Parallel Manipulators with Optimum Dexterity, Rotatability or Workspace
指導教授: 蔡高岳
Kao-Yueh Tsai
口試委員: 王勵群
Li-chun Wang
鄧昭瑞
Geo-Ry Tang
王國雄
Kuo-shiung Wang
許正和
Cheng-ho Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 114
中文關鍵詞: 六自由度並聯式機器人最佳設計操控性等向性產生器
外文關鍵詞: 6-DOF parallel manipulator, Optimum design, Dexterity, Isotropic generator
相關次數: 點閱:560下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

等向性機器人一般被視為具有最佳操控性之設計,當機器人處在一等向性構型,機器人參考點位置與鄰近的奇異點位置距離相等且在位移與力量之控制上具有較高之精密度。目前使用之方法當中以利用等向性產生器設計六自由度等向性機器人為最簡單且最有效率之方法,而且等向性產生器可用來設計等向性串聯式機器人、多餘軸機器人或並聯式機器人。
本文提出新型等向性產生器設計方法,所得到之產生器可設計傳統與非傳統史都華型等向性並聯式機器人以及具有不同類型運動鏈之三鏈或六鏈非史都華型等向性並聯式機器人。由等向性產生器可輕易的得到非常多個等向性設計,因此我們可以從這些設計中搜尋具有較佳運動特性之設計。本文之第二部分提出衡量機器人各種運動特性之方法,並提出一些指數當為目標函數用以得到具有較佳運動特性之機器人。其次更進一步分析並比較這些機器人運動特性以得到具有最佳整體等向性、無奇異點工作空間或方位工作空間之最佳設計。


A manipulator can be controlled equally well in all directions, and sensitivity in velocity and force analysis for an isotropic configuration is at minimum. Therefore, isotropic manipulators are generally considered to be designs with optimum dexterity. Developing 6-DOF isotropic manipulators using isotropic generators is simple and efficient, and isotropic generators can be employed to develop serial, redundant, or parallel isotropic manipulators.
This thesis proposes methods for developing new isotropic generators. The obtained generators can be employed to develop traditional or nontraditional Stewart isotropic parallel manipulators and 3-chain or 6-chain isotropic parallel manipulators with different types of kinematic chains. Since many isotropic manipulators can be easily developed from isotropic generators, we can search for designs with optimum kinematic properties. The second part of this thesis proposes methods for evaluating the kinematic properties of manipulators. Some related indices are presented as objective functions to develop some manipulators with better kinematic properties. The obtained manipulators are then further studied and compared to obtain designs with optimum global dexterity, singularity-free workspace or orientation workspace.

中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 圖表索引 VIII 第一章 前言 1 1.1 文獻回顧 2 1.2 研究動機與目的 6 1.3 論文架構 7 第二章 基本概念 8 2.1 奇異值分解 8 2.2 布魯克座標系統 9 2.3 螺旋理論 11 2.4 運動拘束方程式 16 2.4.1 運動鏈之拘束方程式 17 2.4.2 正向接頭旋轉角度限制之拘束方程式推導 19 2.4.3 連桿間干涉之拘束方程式推導 20 2.5 靜力關係矩陣 22 2.6 D-H連桿參數 23 第三章 新式等向性產生器之推導及應用 26 3.1 以等向性產生器設計並聯式機器人之方法 26 3.2 設計參數與目標函數 31 3.3 等向性產生器 34 3.3.1 滿足h3×h4>0之產生器 34 3.3.2 滿足 h3×h4<0 之產生器 38 3.3.3 滿足 h3>0 與 h4=0 之產生器 39 3.4 PSS運動鏈或PRRS運動鏈之等向性機器人 42 3.5 結語 47 第四章 三鏈六自由度等向性並聯式機器人之合成 48 4.1 等向性產生器 48 4.2 運動鏈 50 4.2.1 三鏈等向性並聯式機器人 50 4.2.2 六鏈等向性並聯式機器人 57 4.3 數值範例 57 4.4 結語 60 第五章 具最佳整體等向性或最大工作空間之六自由度並聯式機器人 61 5.1 無奇異點之軸位移空間 61 5.1.1 利用最佳化最小化目標函數 63 5.1.2 格點掃描(grid-scanning ) 64 5.2 六自由度並聯式機器人工作空間 66 5.2.1 拘束方程式 67 5.2.2 分支點 70 5.2.3 極點 73 5.2.4 演算法 74 5.2.5 數值範例 83 5.2.6 結語 87 5.3 整體等向性指數 87 5.4 具有較佳的操控性,方位工作空間或無奇異點工作空間之六自由度並聯式機器人 88 5.4.1 操控性指數與傳統操控性最佳化設計 89 5.4.2 非傳統性等向性設計 93 5.4.3 機器人運動特性 98 5.5 結語 104 第六章 結論與建議 105 參考資料 107 作者簡介 114

[1] Stewart, D., “A Platform with Six Degree of Freedom,” Proceedings of the Institution of Mechanical Engineers, Vol. 180, No. 1, pp. 371-386 (1965)
[2] Fichter, E. F., “Stewart Platform-Based Manipulator: General Theory and Practical Construction,” International Journal of Robotics Research, Vol. 5, No. 2, pp. 157-182 (1986)
[3] Gosselin, C. M., and Angeles, J., “The Optimum Kinematic Design of a Planar Three-Degree-of-Freedom Manipulator,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, No. 1, pp. 35-41 (1988)
[4] Gosselin, C. M., and Angeles, J., “The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator,” Journal of Mechanical Design, Transactions of the ASME, Vol. 111, No. 2, pp. 202-207 (1989)
[5] Angeles, J., and Lopez-Cajun, C. S., “Kinematic Isotropy and The Conditioning Index of Serial Robotic Manipulators,” International Journal of Robotics Research, Vol. 11, No. 6, pp. 560-571 (1992)
[6] Kircanski, M., “Kinematic Isotropy and Optimal Kinematic Design of Planar Manipulators and a 3-DOF Spatial Manipulator,” International Journal of Robotics Research, Vol. 15, No. 1, pp. 61-77 (1996)
[7] Klein, C. A., and Blaho, B. E., “Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators”, International Journal of Robotics Research, Vol. 6, No. 2, pp. 72-83 (1987)
[8] Pittens, K. H., and Podhorodeski, R. P., “A Family of Stewart Platforms with Optimal Dexterity,” Journal of Robotic Systems, Vol. 10, No. 4, pp. 463-479 (1993)
[9] Stoughton, R. S., and Arai, T., “A Modified Stewart Platform Manipulator with Improved Dexterity,” IEEE Transactions on Robotics and Automation, Vol. 9, No. 2, pp. 166-173 (1993)
[10] Bhattacharya, S., Hatwal, H., and Ghosh, A., “On the Optimum Design of Stewart Platform Type Parallel Manipulators,” Robotica, Vol. 13, No. 2, pp. 133-140 (1995)
[11] Lee, J., Duffy, J., and Hunt, K. H., “Practical Quality Index on the Octahedral Manipulator,” International Journal of Robotics Research, Vol. 17, No. 10, pp. 1081-1090 (1998)
[12] Khan, W. A., and Angeles, J., “The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems,” Journal of Mechanical Design, Transactions of the ASME, Vol. 128, No. 1, pp. 168-178 (2006)
[13] Zanganeh, K. E., and Angeles, J., “Kinematic Isotropy and the Optimum Design of Parallel Manipulators,” International Journal of Robotics Research, Vol. 16, No. 2, pp. 185-197 (1997)
[14] Angeles, J., “The Design of Isotropic Manipulator Architectures in the Presence of Redundancies,” International Journal of Robotics Research, Vol. 11, No. 3, pp. 196-201 (1992)
[15] Angeles, J., Fundamentals of Robotic Mechanical Systems, Springer, NY (2002)
[16] Fattah, A., and Hasan-Ghasemi, A. M., “Isotropic Design of Spatial Parallel Manipulators,” International Journal of Robotics Research, Vol. 21, No. 9, pp. 811-824 (2002)
[17] Fassi, I., Legnani, G., and Tosi, D., “Geometrical Conditions for The Design of Partial or Full Isotropic Hexapods,” Journal of Robotic Systems, Vol. 22, No. 10, pp. 507-518 (2005)
[18] Klein, C. A., and Miklos, T. A., “Spatial Robotic Isotropy,” International Journal of Robotics Research, Vol. 10, No. 4, pp. 426-437 (1991)
[19] Tsai, K. Y., and Huang, K. D., “The Design of Isotropic 6-DOF Parallel Manipulators using Isotropy Generators,” Mechanism and Machine Theory, Vol. 38, No. 11, pp. 1199-1214 (2003)
[20] Tsai, K. Y., and Wang, Z. W., “The Design of Redundant Isotropic Manipulators with Special Parameters,” Robotica, Vol. 23, No. 2, pp. 231-237 (2005)
[21] Tsai, K. Y., and Zhou, S. R., “The Optimum Design of 6-DOF Isotropic Parallel Manipulators,” Journal of Robotic Systems, Vol. 22, No. 6, pp. 333-340 (2005)
[22] Kohli, D., Lee, S. H., Tsai, K. Y., and Sandor, G.N., “Manipulator Configurations Based on Rotary-Linear (R-L) Actuators and Their Direct and Inverse Kinematics,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, No. 4, pp. 397-404 (1988)
[23] Tsai, L. W., and Tahmasebi, F., “Synthesis and Analysis of a New Class of Six Degree-Of-Freedom Parallel Minimanipulators,” Journal of Robotic Systems, Vol. 10, No. 5, pp. 561-580 (1983)
[24] Tahmasebi, F., and Tsai, L. W., “Closed-Form Direct Kinematics Solution of a New Parallel Minimanipulator,” Journal of Mechanical Design, Transactions of the ASME, Vol. 116, No. 4, pp. 1141-1147 (1994)
[25] Tahmasebi, F., and Tsai, L. W., “On the Stiffness of a Novel Six-DOF Parallel Manipulator,” Intelligent Automation and Soft Computing, Proceedings of the First World Automation Congress, Vol. 2, pp. 189-194 (1994)
[26] Angeles, J., Yang, G., and Chen, I. M., “Singularity Analysis of Three-Legged, Six-DOF Platform Manipulators with RRRS Legs,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 1, Vol. 1, pp. 32-36 (2001)
[27] Majid, M. Z. A., Huang, Z., and Yao, Y. L., “Workspace Analysis of a Six-Degrees of Freedom, Three-Prismatic-Prismatic-Spheric- Revolute Parallel Manipulator,” International Journal of Advanced Manufacturing Technology, Vol. 16, No. 6, pp. 441-449 (2000)
[28] Gallant, M., and Boudreau, R., “The Synthesis of Planar Parallel Manipulators with Prismatic Joints for an Optimum, Singular-Free Workspace,” Journal of Robotic Systems, Vol. 19, No. 1, pp. 13-24 (2002)
[29] Hay, A. M., and Snyman, J. A., “Methodologies for the Optimal Design of Parallel Manipulators,” International Journal for Numerical Methods in Engineering, Vol. 59, No. 3, pp. 131-152 (2004)
[30] Liu, X. J., Wang, J., and Pritschow, G., “A New Family of Spatial 3-DOF Fully-Parallel Manipulators with High Rotational Capability,” Mechanism and Machine Theory, Vol. 40, No. 4, pp. 475-494 (2005)
[31] Luh, C. M., Adkins, F. A., Haug, E. J., and Qiu, C. C., “Working Capability Analysis of Stewart Platforms,” Journal of Mechanical Design, Transactions of the ASME, Vol. 118, No. 2, pp. 221-227 (1996)
[32] Haug, E. J., Adkins, F. A., and Luh, C. M., “Operational Envelopes for Working Bodies of Mechanisms and Manipulators,” Journal of Mechanical Design, Transactions of the ASME, Vol. 120, No 1, pp. 84-91 (1998)
[33] Merlet, J. P., “Determination of the Orientation Workspace of Parallel Manipulators,” Journal of Intelligent and Robotic Systems: Theory and Applications, Vol. 13, No. 2, pp. 143-160 (1995)
[34] Merlet, J. P., Gosselin, C. M., and Mouly, N., “Workspace of Planar Parallel Manipulators,” Mechanism and Machine Theory, Vol. 33, No. 1, pp. 7-20 (1998)
[35] Fichter, E. F., “A Stewart Platform-Based Manipulator: General Theory and Practical Construction,” International Journal of Robotics Research, Vol. 5, pp. 157-186 (1986)
[36] Merlet, J. P., “Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison between Different Geometries,” International Journal of Robotics Research, Vol. 18, No. 9, pp. 902-916 (1999)
[37] 蘇聖富,「衡量6-DOF 並聯式機器人工作空間體積之方法」,碩士論文,國立台灣科技大學,台北 (2001)。
[38] 呂建彥,「計算六個自由度並聯式機器人工作空間體積方法之研究」,碩士論文,國立台灣科技大學,台北 (2002)。
[39] 施志玄,「以賈式矩陣決定並聯式機器人工作空間方法之研究」,碩士論文,國立台灣科技大學,台北 (2003)。
[40] 洪培樵,「以最少的拘束方程式決定一般六自由度並聯式機器人之工作空間」,碩士論文,國立台灣科技大學,台北 (2005)。
[41] Gene, H. G., and Charles, F. V. L., Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1990)
[42] Ball, Robert Stawell, The Theory of Screws : A Study in The Dynamics of a Rigid Body, Hodges, Dublin (1876)
[43] Tsai, K. Y., and Lin, J. C., “Determining the Compatible Orientation Workspace of Stewart-Gough Parallel Manipulators,” Mechanism and Machine Theory, Vol. 41, No. 10, pp. 1168-1184 (2006)
[44] Tsai, L. W., Robot Analysis, John Wiley and Sons, NY (1999)

QR CODE