簡易檢索 / 詳目顯示

研究生: 李光寶
LIN-ZAW WIN
論文名稱: 雙螺絲骨釘之遲滯螺絲參數化分析與最佳設計
Parametric Analysis and Design Optimization of the Lag Screw Using in Double Screw Nail
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 劉見賢
Chien-Hsien Liu
林晉
Jinn Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 93
中文關鍵詞: 近端骨折雙螺絲骨釘遲滯螺絲有限元素分析田口品質工程方法類神經網路遺傳演算法
外文關鍵詞: proximal femur fracture, double screw nail, lag screw, finite element analysis, Taguchi method, artificial neural networks, genetic algorithm
相關次數: 點閱:467下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 迦瑪骨釘(Gamma nail)和動態髖骨螺絲(Dynamic hip screw)已廣泛的應用於治療股骨近端骨折,然而,從臨床觀察中發現,在骨折治療過程中植入物會發生的失效模式有破斷和鬆脫等情形,且近端股骨可能會因植入物的影響而發生骨切效應風險(Cut-out),為了減少迦瑪骨釘和動態髖骨螺絲之許多缺點,設計製造出雙螺絲骨釘。雙螺絲骨釘包含一支骨髓內釘、兩支遲滯螺絲以及一或兩支遠端鎖定螺絲,雖然雙螺絲骨釘相較於迦瑪骨釘和動態髖骨螺絲有較佳的臨床性能,但手術後遲滯螺絲亦可能在短期內發生破壞,因此,最佳化設計方法將應用於遲滯螺絲。本研究之目的為以田口品質工程法分析遲滯螺絲之重要設計參數,以及使用類神經網路與遺傳演算法獲得遲滯螺絲之最佳化設計。
    根據田口直交表,採用SolidWorks 2005繪圖軟體來建立三維實體模型,並將實體模型利用parasolid格式轉入為ANSYS 10 Workbench分析軟體中,求解模擬每一個模型的彎曲強度與骨咬合強度。在後處理,遲滯螺絲之最大張應力和總反作用力被用來作為目標值,也取代了最佳化設計之彎曲強度與骨咬合強度。使用變異數分析(ANOVA)來研究遲滯螺絲之彎曲強度和骨咬合強度之設計參數的貢獻度。在最佳化設計中,將遲滯螺絲之最大張應力和總反作用力兩個目標函數產生類神經網路模型,此類神經網路模型可以簡化成加權總集方法,最後以遺傳演算法找出最佳設計。
    本研究之參數化分析中,圓錐角起始位置、內徑是決定彎曲強度的重要設計參數,而內徑、近端根部弧角半徑與節距是決定骨咬合強度的重要設計參數。在本研究中,類神經網絡模型與有限元素分析之結果相近,類神經網路模型相較於傳統的線性迴歸模型有較佳的預測性。根據本研究所提供的有限元素模型,可反應出臨床上的觀察結果。最佳設計點(Patero front)的最佳設計區域(Knee region)同時擁有高的彎曲強度與骨咬合強度,本研究所得到的最佳化設計範圍是權重值在0.42至0.68的區間內,設計參數的相關範圍包括:圓錐角起始位置8.129 ~ 9.032 mm,內徑4.068 ~ 4.342 mm,近端根部弧角半徑為0.4 mm,節距為2.6 mm,近端螺牙傾角為5°,螺牙寬為0.1 mm。本研究可以幫助工程師設計出新的骨科植入物及幫助骨科醫生選擇合適的骨科植入物。


    The gamma nail and dynamic hip screw have been applied for the treatment of proximal femoral fracture. However, in the clinical point of view, the implants may fail and cause loss of fracture fixation and impairment of fracture healing. In addition, the proximal femur may be cut out by those implants. In order to reduce many disadvantages of the gamma nail and dynamic hip screw, the double screw nail was designed and manufactured. The double screw nail which consisted of an interlocking nail, two proximal lag screws, and one or two distal locking screws. Although the double screw nail had better clinical performance as compared with the gamma nail and dynamic hip screw, the lag screws used in the double screw nail might also occur damage in a short period. Therefore, the multiobjective design optimization method would be applied to the lag screws. The purposes of this study were to analyze the important design parameters of the lag screws using the Taguchi method and acquire the optimal design of the lag screws using the artificial neural networks and genetic algorithms.
    Based on the arrangement of the Taguchi orthogonal array, the three-dimensional solid models were created by SolidWorks 2005. Then, the solid models were transformed into ANSYS 10 Workbench by using parasolid format to simulate the bending and pullout strength of the lag screws. In the postprocessing, the maximal tensile stress and the total reaction force of the lag screw was used as the objective value for subsequent design optimizations to represent the bending strength and pullout strength. Analysis of the variance (ANOVA) was used to investigate the contribution of design parameters. In the optimal design, the maximal tensile stress and the total reaction force of the lag screws, two objective functions were created by artificial neural networks, and they could be simplified by a weighted-sum aggregating approach. Finally, the optimal design of the lag screws would be obtained by using genetic algorithms.
    In the parametric analysis of this study, initial position of conical angle and inner diameter are the important factors for bending strength, and inner diameter, proximal root radius, and pitch are the important parameters for the pullout strength. The ANN models could accurately reflect the finite element results and also had the better predictability as compared with the traditional linear regression model. Developing the finite element models in this study could reflect the clinical observation. The solutions at the knee region of the Pareto fronts had higher bending strength and pullout strength. In the knee region, the weight ranged from 0.42-0.68. The corresponding range of the design parameters was 8.129 ~ 9.032 mm for initial position of conical angle and 4.068 ~ 4.342 mm for inner diameter. The fixed parameters were 2.6 mm for pitch, 0.4 mm for proximal root radius, 5 degrees for proximal half angle, and 0.1 mm for thread width. This study could assist the engineers to design new orthopedics implants and help the orthopedics surgeons to select suitable orthopedics implants.

    中文摘要………………………………………………………… I 英文摘要………………………………………………………… II 誌 謝………………………………………………………… III 目 錄………………………………………………………… IV 符號索引………………………………………………………… VII 圖表索引………………………………………………………… IX 第一章 緒論……………………………………………………… 1 1.1 研究背景、動機與目的………………………………… 1 1.2 股骨的解剖構造………………………………………… 6 1.3 股骨近端骨折的治療方式……………………… 8 1.4 鎖定式骨髓內釘簡介…………………………………… 10 1.5 文獻回顧………………………………………………… 12 1.5.1 骨內釘之文獻回顧……………………………… 12 1.5.2 骨螺絲之文獻回顧……………………………… 15 1.6 本文架構………………………………………………… 19 第二章 材料與方法……………………………………………… 20 2.1 研究方法簡介………………………………………… 20 2.2 股骨近端植入物之基本介紹………………………… 21 2.3 有限元素法簡介………………………………………… 26 2.3.1 前處理階段……………………………………… 27 2.3.2 求解階段………………………………………… 29 2.3.3 後處理階段……………………………………… 29 2.4 股骨模型之建立………………………………………… 29 2.5 雙螺絲骨釘模型之建立………………………………… 30 2.6 彎曲強度分析模型之建立....………………………… 34 2.7 骨咬合強度分析模型之建立…………………………… 35 2.8 元素型式………………………………………………… 36 2.9 接觸問題………………………………………………… 39 2.10 田口參數化分析……………………………………… 40 2.10.1 田口品質工程法……………………………… 40 2.10.2 遲滯螺絲之幾何限制條件…………………… 43 2.10.3 彎曲強度之參數化分析……………………… 45 2.10.4 骨咬合強度之參數化分析…………………… 45 2.11 類神經網路…………………………………………… 46 2.12 遺傳演算法…………………………………………… 49 第三章 結果……………………………………………………… 53 3.1 有限元素分析之結果…………………………………… 53 3.1.1 彎曲強度模型分析之結果……………………… 53 3.1.2 骨咬合強度模型分析之結果…………………… 57 3.2 田口品質工程法之結果………………………………… 61 3.2.1 彎曲強度之參數化分析結果…………………… 61 3.2.2 骨咬合強度之參數化分析結果………………… 64 3.3 類神經網路之結果……………………………………… 68 3.3.1 彎曲強度之類神經網路模型結果……………… 68 3.3.2 骨咬合強度之類神經網路模型結果…………… 70 3.4 遲滯螺絲之最佳化結果………………………………… 72 第四章 綜合討論………………………………………………… 74 第五章 結論與未來展望………………………………………… 82 5.1 結論……………………………………………………… 82 5.2 未來展望………………………………………………… 83 參考文獻………………………………………………………… 84 作者簡介………………………………………………………… 92 授權書…………………………………………………………… 93

    [1] 楊榮森,臨床骨折學,第268頁,台北,合記圖書出版社,民國七十八年。
    [2] Wang, C.J., C.J. Brown, A.L. Yettram, and P. Procter, “Intramedullary Femoral Nails: One or Two Lag Screws? A Preliminary Study,” Medical Engineering & Physics, Vol.22, pp.613-624(2000).
    [3] Brown, C.J., C.J. Wang, A.L. Yettram, and P. Procter, “Intramedullary Nails with Two Lag Screws,” Clinical Biomechanics, Vol.19, pp.519-525(2004).
    [4] Halder, S.C., “The Gamma Nail for Peritrochanteric Fractures,” J Bone Joint Surg, Vol.74B, pp.340-344(1992).
    [5] 陳育斌,股骨鎖定內釘之有限元素分析與生物力學測試,台灣科技大學機械工程系碩士論文,民國90年(2001)。
    [6] 林 晉,鎖定式骨髓內釘之基礎科學與臨床應用,第135-149頁,台北,合記圖書出版社,民國93年(2004)。
    [7] Haynes, R.C., R.G. Poll, A.W. Miles, and R.B. Weston, “An Experimental Study of the Failure Modes of the Gamma Locking Nail and AO Dynamic Hip Screw under Static Loading: A Cadaveric Study,” Medical Engineering & Physics, Vol.19, pp.446-453(1997).
    [8] Bridle, S.H., A.D. Patel, M. Bircher, and P.T. Calvert, “Fixation of Intertrochanteric Fractures of the Femur,” J Bone Joint Surg, Vol.73B, No.2, pp.330-334(1991).
    [9] Deith L. Moore and Arthur F. Dalley,ANATOMY,Hagerstown,Lippincott Williams & Wilkins(2001).
    [10] Radford, P.J., M. Needoff, and J.K. Webb, “A Prospective Randomised Comparison of the Dynamic Hip Screw and the Gamma Locking Nail,” J Bone Joint Surg, Vol.75B, No.5, pp.789-793(1993).
    [11] Rosenblum, S.F., J.D. Zuckerman, F.J. Kummer, and B.S. Tam, “A Biomechanical Evaluation of the Gamma Nail,” J Bone Joint Surg, Vol.74B, pp.352-357(1992).
    [12] Ingman, A.M., “Percutaneous Intramedullary Fixation of Trochanteric Fractures of the Femur Clinical Trial of A New Hip Nail,” Injury, Int. J. Care Injured, Vol.31, pp.483-487(2000).
    [13] Sitthiseripratip, K., H.V. Oosterwyck, J.V. Sloten, B. Mahaisavariya, E.L.J. Bohez, J. Suwanprateeb, R.V. Audekercke, and P. Oris, “Finite Element Study of Trochanteric Gamma Nail for Trochanteric Fractrue,” Medical Engineering & Physics, Vol.25, pp.99-106(2003).
    [14] Apel, D.M., A. Patwardhsn, M.S. Pinzur, and W.R. Dobozi, “Axial Loaning Studies of Unstable Intertrochanteric Fractures of the Femur,” Clinical Orthopaedics and Related Research, Vol.246, pp.156-164(1989).
    [15] Mahomed, N., I. Harrington, J. Kellam, G. Maistrelli, T. Hearn, and J. Vroemen, “Biomechanical Analysis of the Gamma Nail and Sliding Hip Screw,” Clinical Orthopaedics and Related Research, No.304, pp.280-288(1994).
    [16] Leung, K.S., W.S. So, W.Y. Shen, and P.W. Hui, “Gamma Nails and Dynamic Hip Screws for Peritorchanteric Fractures,” J Bone Joint Surg, Vol.74B, No.3, pp.345-351(1992).
    [17] Gaebler, C., S. stanzl-Tschegg, E.K. Tschegg, C. Kukla, W.A. Menth-Chiari, G.E. wozasek, and T. Heinz, “Implant Failure of the Gamma Nail,” Injury, Int. J. Care Injured, Vol.30, pp.91-99(1999).
    [18] Ovadia, D.N.J.L. Chess, “Intraoperative and Postoperative Subtrochanteric Fracture of the Femur Associated with Removal of the Zickel Nail,” J Bone Joint Surg, Vol.70A, No.2, pp.239-243(1988).
    [19] 陳新郁、林政仁,有限元素分析 – 理論與應用 ANSYS,第5~7頁,台北,高立圖書有限公司,民國90年(2001)。
    [20] Wang, C.J., A.L. Yettram, M.S. Yao, and P. Procter, “Finite Element Analysis of a Gamma Nail within A Fractured Femur,” Medical Engineering, Vol.20, pp.677-683(1998).
    [21] Hayes, W.C., E.R. Myers, J.N. Morris, T.N. Gerhart, H.S. Yett, and L.A. Lipsitz, “Impact Near the Hip Dominates Fracture Risk in Elderly Nursing Home Residents who Fall,” Calcif Tissue Int, Vol.52, No.3, pp.192-198(1993).
    [22] Brink, W.A.I.M.C. Janssen, “Failure of the Gamma Nail in A Highly Unstable Proximal Femur Fracture: Report of Four Cases Encountered in the Netherlands,” Journal of Orthopaedic Tuauma, Vol.9, No.1, pp.53-56(1995).
    [23] Seif-Asaad, S.S., A.V.F. Nargol, and A. Port, “Unstable Intertrochanteric Fracture Treated with the Variwall Reconstruction Nail, Injury,” Vol.26, No.6, pp.367-372(1995).
    [24] Garnavos, C., A. Peterman, and P.W. Howard, “The Treatment of Difficult Proximal Femoral Fractures with the Russell-Taylor Reconstruction Nail,” Injury, Int. J. Care Injured, Vol.30, pp.407-415(1999).
    [25] Roberts, C.S., A. Nawab, M. Wang, M.J. Voor, and D. Seligson, “Second Generation Intramedullary Nailing of Subtrochanteric Femur Fractures: A Biomechanical Study of Fracture Site Motion,” Journal of Orthopaedic Tuauma, Vol.16, pp.231-238(2002).
    [26] Kubiak, E.N., M. Bong, S.S. Park, F. Kummer, K. Egol, and K.J. Koval, “Intramedullary Fixation of Unstable Intertrochanteric Hip Fracture One or Tow Lag Screws,” J Orthop Trauma, Vol.18, pp.12-17(2004).
    [27] Seral, B., J.M. Garcia, J. Cegonino, M. Doblare, and F. Seral, “Finite Element Study of Intramedullary Osteosynthesis in the Treatment of Trochanteric Fractures of the Hip: Gamma and PFN,” Injury, Int. J. Care Injured, Vol.35, pp.130-135(2004).
    [28] Chen, W.P., C.L. Tai, C.H. Shih, P.H. Hhseh, M.C. Leou, and M.S. Lee, “Selection of Fixation Devices in Proximal Femur Rotational Osteotomy: Clinical Complications and Finite Element Anslysis,” Clinical Biomechanics, Vol.19, pp.255-262(2004).
    [29] Fritz, T., D. Hiersemann, C. Krieglstein, and W. Friedl, “Prospective Randomized Comparison of Gliding Nail and Gamma Nail in the Therapy of Trochanteric Fractures,” Arch Orthop Trauma Surg, Vol.119, pp.1-6(1999).
    [30] Ashby, M.E.J.C. Anderson, “Treatment of Fractures of the Hip and Ipsilateral Femur with the Zickel Device,” Clinical Orthopaedics and Related Research, pp.156-160(1977).
    [31] 余志成,機械系統設計,第60~90頁,台北,高立圖書有限公司,民國91年(2002)。
    [32] 梁蘭麗,股骨Z型外翻截骨術之三維有限元素分析,中原大學醫學工程系碩士論文,民國92年(2003)。
    [33] 孫施盛,退化性關節炎與骨質疏鬆性股骨頭之生物力學性質分析,陽明大學醫學工程系碩士論文,民國91年(2002)。
    [34] 陳博光,現代骨科診療室,第213~221頁,台北,正中書局,民國89年(2000)。
    [35] 魏忠景,股骨近端骨折治療之有限元素分析與生物力學測試,台灣科技大學機械工程系碩士論文,民國95年(2006)。
    [36] 徐慶琪,骨螺絲之結構設計與生物力學分析,台灣科技大學機械工程系博士論文,民國94年(2005)。
    [37] Dar, F.H., Meakin, J.R. and Aspden RM, “Statistical methods in finite element analysis,” J Biomech, Vol35, pp.1155-1161(2002).
    [38] Karayiannis, N.B. and Venetsanopoulos, A.N.,“ Artificial Neural Networks: Learning Algorithms, Performance Evaluation, and Applications,” Boston: Kluwer Academic, p.440 (1993).
    [39] Agatonovic-Kustrin, S. and Beresford, R., “ Basic Concepts of Artificial Neural Network (ANN) Modeling and its Application in Pharmaceutical Research,” J Pharm Biomed Anal, Vol.22, pp.717-727(2000).
    [40] Hsu, C.C., Chao, C.K., Wang, J.L. and Lin, J, “Multiobjective Optimization of Tibial Locking Screws Design Using a Genetic Algorithm: Evaluation of Mechanical Performance,” J Orthop Res, Vol. 24, pp.908-916 (2006).
    [41] Bendat, J.S. and Piersol, A.G., “Random Data: Analysis and Measurement Procedures,” 3rd ed. New York: Wiley, p.594 (2000).
    [42] Taga, I., Funakubo, A. and Fukui, Y., “Design and Development of an Artificial Implantable Lung Using Multiobjective Genetic Algorithm: Evaluation of Gas Exchange Performance,” ASAIO J 51, pp.92-102(2005).
    [43] 周建基,股骨近心端治療之有限元素分析,台灣科技大學機械工程系碩士論文,民國93年(2004)。
    [44] Lin, J., Lin, S.J., Chiang, H. and Hou, S.M., “Bending Strength and Holding Power of Tibial Locking Screws,” Clin Orthop, Vol.385, pp.199-206(2001).
    [45] Willett, K., Hearn, T.C. and Cuncins, A.V., “Biomechanical Testing of a New Design for Schanz Pedicle Screws,” J Orthop Trauma, Vol. 7, pp.375-380(1993).
    [46] Chao, C.K., Hsu, C.C., Wang, J.L., Lin, J., “Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses,” J Spinal Disorders, (2006).
    [47] Okuyama, K., Sato, K., Abe, E., et al, “Stability of Transpedicle Screwing for the Osteoporotic Spine: an in Vitro Study of the Mechanical Stability,” Spine Vol.18, pp.2240-2245(1993).
    [48] Chen, S.I., Lin, R.M. and Chang, C.H, “Biomechanical Investigation of Pedicle Screw–Vertebrae Complex: A Finite Element Approach Using Bonded and Contact Interface Conditions,” Med Eng Phys Vol.25, pp.275-282(2003).
    [49] Fowlkes, W.Y. and Creveling, C.M, “Engineering Methods for Robust Product Design Using Taguchi Methods in Technology and Product Development,” Reading, MA: Addison-Wesley; p.403 (1995).
    [50] Lin, Y.C., Yan, B.H. and Huang, F.Y., “Surface Improvement Using a Combination of Electrical Discharge Machining with Ball Burnish Machining Based on the Taguchi Method,” Int J Adv Manuf Technol, Vol.18, pp.673-682(2001).
    [51] Heran, T.C., Schatzker, J. and Wolfson, N., “Extraction Strength of Cannulated Cancellous ,” J Orthop Trauma, Vol.7, No.2, pp.138-141(1993).
    [52] Mitchell, M., “An introduction to genetic algorithms,” Cambridge, MA: Bradford; p.205(1996).
    [53] Michalewicz, Z.,“Genetic algorithms+data structures=evolution programs,” Berlin: Springer; p.250(1992).
    [54] Su, F.C. and Wu, W.L., “Design and Testing of a Genetic Algorithm Neural Network in the Assessment of Gait Patterns,” Med Eng Phys, Vol.22, pp.67-74(2000).
    [55] Whittle, A.P., Wester, W. and Russell, T.A., “Fatigue Failure in Small Diameter Tibial Nails,” Clin Orthop, Vol.315, pp.119-128(1995).
    [56] Leggon, R.L., Lindsey, R.W., Doherty, B.J., Alexander, J., Noble, P., “The Holding Strength of Cannulated Screws Compared with Solid Core Screws in Cortical and Cancellous Bone,” J Orthop Trauma, Vol.7, No.5, pp.450-457(1993).
    [57] Krag, M.H., Beynnon, B.D., Pope, M.H., Frymoyer, J.W., Haugh, L.D. and Weaver, D.L., “An Internal Fixator Forposterior Application to Short Segments of the Thoracic, Lumbar, or Lumbosacral Spine: Design and Testing,” Clin Orthop, Vol.203, pp.75-98(1986).
    [58] Kwok, A.W.L., Finkelstein, J.A., Woodside, T., Hearn, T.C., Hu, R.W., “Insertional Torque and Pull-Out Strengths of Conical and Cylindrical Pedicle Screws in Cadaveric Bone,” Spine, Vol.21, No.21, pp. 2429-2434(1996).
    [59] DeCoster, T.A., Heetderks, D.B., Downey, D.J., Ferries, J.S. and Jones, W., “Optimizing Bone Screw Pullout Force,” J Orthop Trauma, Vol.4, No.2, pp.169-174(1990).
    [60] Asnis, S.E., Emberg, J.J., Bostrom, M.P.G, Wright, T.M., Harrington, R.M., Tencer, A. and Peterson, M., “Cancellous Bone Screw Thread Design and Holding Power,” J Orthop Trauma, Vol.10, pp.462-469(1996).
    [61] Gaebler C., Stanzl-Tschegg, S., Heinze, G.,Holper, B., Milne, T.,Berger,G. and Vecsei, V., “Fatigue Strength of Locking Screws and Prototypes Used in Small-Diameter Tibial Nails: A Biomechanical study,” J Trauma, Vol.47, pp.379-384(1999)
    [62] Hou, S.M., Hsu, C.C., Wang, J.L., Chao, C.K. and Lin, J., “Mechanical Test and Finite Element Models for Bone Holding Power of Tibial Locking Screws,” Clin Biomech, Vol.19, pp.738-745(2004).
    [63] Choi, W., Lee, S., Kim, J.W., Kim, J.K. and Goel, V., “Assessment of Pullout Strength of Various Pedicle Screw Designs in Relation to the Changes in Bone Mineral Density,” 48th Annual Meeting of the Orthopaedic Research Society, (2002).
    [64] Ono, A., Brown, M.D., Latta, L.L., Milne, E.L. and Holmes, D.C., “Triangulated Pedicle Screw Construct Technique and Pull-out Strength of Conical and Cylindrical Screws,” Journal of Spine Disorders, Vol. 14, pp.323-329(2001).
    [65] Abshire, B.B., McLain, R.F., Valdevit, A. and Kambic, H.E., “Characteristics of Pullout Failure in Conical and Cylindrical Pedicle Screws after Full Insertion and Back-out,” Spine J, Vol.1, pp.408-414(2001).
    [66] Brown, G.A., McCarthy, T., Bourgeault, C.A. and Callahan, D.J., “Mechanical Performance of Standard and Cannulated 4.0-mm Cancellous Bone Screws,” J Orthop Res, Vol.18,pp.307-312(2000).
    [67] McLain, R.F., McKinley, T.O., Yerby, S.A., Smith, T.S. and Sarigul-Klijn, N., “The Effect of Bone Quality on Pedicle Screw Loading in Axial Instability: A Synthetic Model,”Spine, Vol.22, pp.1454-1460(1997).
    [68] Sell, P., Collins, M. and Dove, J., “Pedicle Screws: Axial Pull-Out Strength in the Lumber Spine,”Spine, Vol.13, pp.1075-1076(1998).
    [69] Halvorson, T.L., Thomas, K.A., Whitecloud, T.S. and Cook, S.D., “Effects of Bone Mineral Density on Pedicle Screw Fixation,” Spine, Vol.19, pp.2415-2420(1994).
    [70] Yamagata, M., Kitahra, H., Minami, S., Takahashi, K., Isobe, K., Moriya, H. and Tamaki, T., “Mechanical Stability of the Pedicle Screw Fixation Systems for the Lumber Spine,” Spine, Vol.17, pp.S51-S54 (1992).
    [71] Lim, T.H., An, H.S., Evanich, C., Hasanoglu, K.Y., McGrady, L. and Wilson, C.R., “Strength of Anterior Vertebral Screw Fixation in Relationship to Bone Mineral Density,” J Spinal Disord, Vol.8, No.2, pp.121-125(1995).
    [72] Youssef, J.A., McKinley, T.O., Yerby, S.A. and McLain, R.F., “Characteristics of Pedicle Screw Loading. Effect of Sagittal Insertion Angle on Intrapedicular Bending Moments,” Spine, Vol.24, pp.1077-1081(1999).
    [73] Davim, J.P., “Design of Optimization of Cutting Parameters for Turning Metal Matrix Composites Based on the Orthogonal Arrays,” J Mater Process Technol, Vol.132, pp.340-344(2003).
    [74] Tsao, C.C. and Hocheng, H., “Taguchi Analysis of Delamination Associated with Various Drill Bits in Drilling of Composite Material,” Int J Mach Tool Manu, Vol.44, pp.1085-1090(2004).
    [75] Niculescu, S.P.,”Artificial Neural Networks and Genetic Algorithms in QSAR,”J Mol Struct (THEOCHEM), Vol.622, pp.71-83(2003).

    QR CODE