簡易檢索 / 詳目顯示

研究生: 林舒淇
SHU-CHI LIN
論文名稱: 具隨機參數桁架結構最佳化設計-使用改良式粒子族群最佳化
Optimal Design of Truss-Structures with Random Parameters Using Improved Particle Swarm Optimization
指導教授: 呂森林
Sen-Lin Lu
口試委員: 黃聰耀
Tsong-Yao Hwang
廖崇禮
Chung-Li Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 140
中文關鍵詞: 粒子族群最佳化有限元素法桁架結構
外文關鍵詞: PSO, Finite element method, Truss
相關次數: 點閱:227下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在研究桁架結構承載負荷下之多目標尺寸及型態最佳化設計。文中考慮結構參數及其負荷為常態分布之隨機變數,再利用有限元素法分析桁架結構,搭配偏導規則(partial derivative rule)計算出節點位移與桿件應力之平均值與變異數,並以改良式粒子族群演算法來加速最佳化的收斂速度。文中以桁架之重量與桿件斷面積之數量為最佳化目標,以截斷面面積與節點座標為離散的設計變數,其拘束包含基於可靠度之桿件應力、節點位移和挫曲條件。最後以數個數值範例列舉本文提出方法之應用,其數值結果與蒙地卡羅模擬值相當吻合。


    In the thesis both the sizing and shaping multiobjective optimizations of truss structures under loads are studied. The structural parameters and loads are considered as normal random variables. The mean and variance of the nodal displacement and truss stress are evaluated using the finite element method, associated with the partial derivative rule. The optimization process is performed using a modified particle swarm optimizer (PSO) to accelerate the convergence rate. The weight of truss and the number of cross-section area are chosen as the optimal objects. The cross-section area and the nodal displacement are taken into account as discrete design variables. The constraints include the stress, nodal displacement, and buckling conditions based on the reliability. The applications of the proposed approach are illustrated with several numerical examples, and their results are in good agreement with those calculated using the Monte Carlo simulation.

    摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 符號對照表 第一章 緒論 1.1 前言 1.2 研究目的與動機 1.3 文獻回顧 1.4 論文架構 第二章 最佳化方法-微調機制式粒子群最佳化 2.1 粒子群最佳化演算法 2.2 粒子群最佳化之發展背景 2.3 PSO執行程序 2.4 慣性權重粒子群最佳化 2.5 壓縮因子式粒子群最佳化 2.6 具隨機粒子與微調機制式粒子族群最佳化演算法 2.7 具隨機粒子與微調機制式粒子群最佳化演算法執行程序 2.8 桁架結構最佳化設計問題之數學模型 2.8.1 起始條件設定機制 2.8.2 單目標最佳化 2.8.2 多目標最佳化 第三章 具隨機參數桁架結構之力學分析及可靠度 3.1 前言 3.2 有限元素分析法 3.3 具隨機參數桁架結構的力學分析 3.4 含數個隨機變數之函數的平均值與標準差 3.5 可靠度分析理論 3.5.1 可靠度函數 3.5.2 強度-應力干涉理論 3.6 導入可靠度拘束之最佳化設計 3.6.1 具隨機參數桁架結構之單目標可靠度最佳化設計 3.7.2 具隨機參數桁架結構之多目標最佳化設計 3.7 蒙地卡羅數位模擬 第四章 數值範例與討論 4.1 範例一:空間25桿桁架最佳化設計 4.2 範例二:平面18桿桁架最佳化設計 4.3 範例三:平面10桿桁架最佳化設計 4.4 範例四:考慮挫曲強度拘束之平面10桿桁架最佳化設計 5.5 範例五:平面10桿桁架可靠度拘束最佳化設計 4.6 範例六:平面10桿桁架多目標可靠度拘束最佳化設計 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] Kennedy, J. and Eberhart, R.C., “Particle swarm optimization”, Proceedings of the IEEE International Conference on Neural Networks, Vol. 4, pp. 1942-1948(1995)
    [2] Kirsch, U., Optimum structural design, concepts, methods and applications, McGraw-Hill, New York (1981)
    [3] Kanji Imai and Lucien A. Schmit, Jr. ,F., “Configuration optimization of trusses”, ASCE, Vol. 107, No. ST5 (1981)
    [4] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, New York (1989)
    [5] Jenkins, W.M., “Towards structural optimization via the Genetic algorithm”, Computers and Structures, vol. 40, pp. 1321-1327 (1991)
    [6] Rajeev, S. and Krishnamoorthy, C.S., “Discrete optimization of structures using genetic algorithms”, Journal of Structural Engineering (ASCE), vol. 118, pp. 1233-1250 (1992)
    [7] Eberhart, R.C. and Shi, Y., “Particle swarm optimization: Developments applications and resources”, Proceedings of the IEEE Conference on Evolutionary Computation, Vol 1, 81-86, Soul (2001)
    [8] Eberhart, R.C. and Shi,Y., “Guest editorial special issue on particle swarm optimization”, IEEE Transactions on Evolutionary Computation, Vol 8, Particle Swarm Optimization, 202-203, Institute of Electrical and Electronics Engineers Inc (2004)
    [9] Xiaohui, H., Eberhart, R.C. and Shi, Y., “Recent advances in particle swarm”, Proceedings of the 2004 Congress on Evolutionary Computation, Vol 1, 90-97, Institute of Electrical and Electronics Engineers Inc (2004)
    [10] Kennedy J. Eberhart RC. Swarm intelligence, Morgan Kaufman Publishers (2001)
    [11] Fourie, P.C., and Groenwold, A. A., “Particle swarms in topology optimization”, Proc., 4th World Congress of Structural and Multidisciplinary Optimization, Liaoning Electronics Press, Dalian, China, pp. 52-53 (2001)
    [12] Fourie, P.C., and Groenwold, A. A., “The particle swarm optimization algorithm in size and shape optimization”, Structural Multidisciplinary Optimization, 23(4), pp. 259-267 (2001)
    [13] Schutte, J. F., and Groenwold, A. A., “Sizing design of truss structures using particle swarms”, Structural Multidisciplinary Optimization, 25(4), pp. 261-269 (2003)
    [14] He S., Wu Q.H., Wen J.Y., Saunders J.R., Paton R.C., A particle swarm optimizer with passive congregation. Biosystem (2004)
    [15] Lijuan Li, Zhibin Huang, Feng Liu, “An improved particle swarm optimizer for truss structure optimization”, IEEE, No. 4072227, pp. 924-928 (2006)
    [16] J.F. Schutte and A.A. Groenwold, “Sizing design of truss structures using particle swarms”, Structural Multidisciplinary Optimization, 25,pp. 261-269 (2003)
    [17] L.J. Li, Z.B. Huang, F. Liu, Q.H. Wu, “A heuristic particle swarm optimizer for optimization of pin connected structures”, Computers and Structures, 85, pp. 340-349 (2007)
    [18] Kang Seok Lee, Zong Woo Geem, “A new structural optimization method based on the harmony search algorithm”, Computers and Structures, 82, pp. 781-798 (2004)
    [19] L.J. Li, Z.B. Huang, F. Liu, “A heuristic particle swarm optimization method for truss structures with discrete variables”, Computers and Structures, 87, pp. 435-443 (2009)
    [20] 蘇昱豪, 「具隨機粒子與微調機制式粒子群最佳化」,碩士論文,國立台灣科技大學,台北(2006)。
    [21] A. Kaveh, S. Talatahari, “A particle swarm ant colony optimization for truss structures with discrete variables”, Journal of Constructional Steel Research, 65, pp.1558-1568 (2009)
    [22] Rao, S.S., Reliability Based Design, Mc Graw-Hill (1992)
    [23] Wei Gao and Nong Zhang, Probabilistic and interval static response analysis of truss structrues with Uncertain Parameters, Internal Journal for Computational Methods in Engineering Science and Mechanics, pp. 9:260-269 (2008)
    [24] C.K. Dimou and V.K. Koumousis, “Reliability-based optimal design of truss structure using particle swarm optimization”, ASCE (2009)
    [25] K.E. Parsopoulos, D.K. Tasoulis, M.N. Vrahatis, “Multiobjective optimization using parallel vector evaluated particle swarm optimization”, Proceedings of the IASTED International Conference. Applied Informatics , art. No. 411-177, pp. 823-828 (2004)
    [26] Galante, M. and Oñate, E., “Genetic algorithms as an approach to optimize real-world trusses”, International Journal for Numerical Methods in Engineering, vol. 39, pp. 361-382 (1996)
    [27] 邱兆宇, 「具可靠度拘束桁架結構最佳化設計-使用改良的遺傳演算法」,碩士論文,國立台灣科技大學,台北(2009)
    [28] Kennedy, J., Eberhart, R.C. and Shi, Y., Swarm intelligence, San Francisco, Morgan Kaufmann Publishers (2001)
    [29] Eberhart, R.C. and Kennedy, J., “A new optimizer using particle swarm theory”, Proceedings of the 6th International Symposium on Micro Machine and Human Science, 39-43, Nagoya, Japan, IEEE, Piscataway, NJ, USA (1995)
    [30] Robinson, Jacob, Sinton, Seelig and Rahmat-Samii, Yahya., “Particle swarm, genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna”, IEEE Antennas and Propagation Society, AP-S International Symposium, pp. 314-317, San Antonio, TX, United States, nstitute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States (2002)
    [31] Shi, Y. and Eberhart, R., “A modified particle swarm optimizer”, Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69-73, Anchorage, AK, USA, IEEE, Piscataway, NJ, USA (1998)
    [32] Shi, Y. and Eberhart, R., “Empirical study of particle swarm optimization”, Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1945-1950, Washington, DC, IEEE, Piscataway, NJ, USA (1999)
    [33] Clerc, M., and Kennedy, J., “The particle swarm: Explosion, stability, and convergence in a multimodal complex space”, Proceedings of the Congress of Evolutionary Computation, Vol. 6, pp. 58-73, Washington DC, IEEE, Piscataway, NJ, USA (2000)

    QR CODE