簡易檢索 / 詳目顯示

研究生: 王俊文
JYUN-WUN WANG
論文名稱: 顱骨骨釘植入裝置的連續裝填機構開發與植入模擬分析
Development of Continuous Screw Loading Mechanism for Cranioplasty Implantation Device and Simulation Analysis of Implantation
指導教授: 張復瑜
Fu-Yu Chang
口試委員: 徐慶琪
Ching-Chi Hsu
王宏志
Hung-Chih Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 116
中文關鍵詞: 顱骨成形術電動骨科螺絲起子骨釘有限元素法
外文關鍵詞: Cranioplasty, Electric orthopedic screwdriver, Bone screw, Finite Element Method
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開顱手術(Craniotomy)是治療頭部受傷患者的常規方法之一。手術完成後需進行顱骨成形手術(Cranioplasty)來固定和修復顱骨。目前在臨床上越來越多醫生在進行顱骨成形手術時使用電動骨科螺絲起子(Electric orthopedic screwdriver)以植入骨釘及固定骨板。然而,因顱骨骨釘較小,裝填較費時且需極為小心。另外,使用電動骨科螺絲起子植入骨釘時,如能將扭矩、轉速最佳化,應能有最好的植入結果,但是過去的文獻中很少對此問題進行深入探討。本研究目標為嘗試改善目前的電動骨科螺絲起子的設計及植入方式,主要包括兩個部分:連續裝填機構的設計與驗證,及骨釘植入顱骨的有限元素分析與實驗。

    本研究使用電腦輔助設計(Computer aided design, CAD)軟體設計了一款可適用於電動骨科螺絲起子的顱骨骨釘連續裝填機構。此設計將顱骨骨釘以骨釘座進行固定後裝填在旋轉匣中進行使用。透過3D列印機使用聚乳酸(Polylactic acid, PLA)材料製作所設計機構的各個組件,再經過研磨處理以改善組件表面品質、精度及公差後,組裝完成產品原型,並進行連續裝填與植入功能的測試與驗證。

    此外,本研究使用有限元素方法(Finite Element Method, FEM)進行骨釘植入顱骨的顯性動力學(Explicit dynamics)分析。以本研究所建立的骨釘植入顱骨有限元素模型,設定轉速180 rpm、下壓力5N及破壞位移參數(Displacement at failure) 0.2的情形下,骨釘植入顱骨過程中扭矩值初期隨著植入深度增加而增大,最後趨近一穩定值165N-mm。最後,我們使用豬顱骨作為人類顱骨的替代物進行骨釘植入顱骨實驗,並以實驗所量得的扭矩值探討及驗證本研究有限元素模擬結果的準確性。


    Craniotomy is a common procedure for treating head injuries, and cranioplasty is performed afterwards to fix and restore the skull. In clinical practice, an increasing number of surgeons are using electric orthopedic screwdrivers for implanting bone screws and fixing bone plates during cranioplasty. However, the small size of skull bone screws makes the loading process time-consuming and requires extreme caution. Additionally, optimizing torque, speed, and downward pressure during the implantation process using an electric orthopedic screwdriver could lead to better implantation outcomes. However, there has been limited research on this topic in the existing literature. This study aims to improve the design and implantation process of electric orthopedic screwdrivers, and focuses on two main aspects: the design and validation of a continuous screw loading mechanism and Finite Element Method and experiments of bone screw implantation into the skull.

    Using Computer-Aided Design (CAD) software, a continuous screw loading mechanism suitable for electric orthopedic screwdrivers was designed for skull bone screws. The mechanism used bone screw holders to hold the bone screws in place securely and load them into a rotating chamber. The components of the designed mechanism were 3D printed using polylactic acid (PLA) material. After post-processing, including surface quality and precision improvement, and tolerance adjustment, the assembled prototype was tested and verified for continuous screw loading and implantation functionality.

    Furthermore, Finite Element Method(FEM) using explicit dynamics was conducted to simulate bone screw implantation into the skull. A finite element model of bone screw implantation into the skull was established. Under a rotation speed of 180 rpm, a downward pressure of 5N, and a displacement at failure parameter of 0.2, the simulation showed the torque values during the bone screw implantation process initially increased with the implantation depth and eventually reached a stable value of 165 N-mm. Finally, experiments were conducted using porcine skull specimens as substitutes for human skulls to implant the bone screws. The torque values obtained from the experiments were used to validate and verify the accuracy of the finite element simulation results.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 1 第一章、緒論 2 1.1. 研究背景 2 1.2. 研究動機與目的 4 第二章、文獻回顧 6 2.1. 顱骨成形術 6 2.2. 臨床腦部逆向模型 11 2.2.1. 電腦斷層掃描(Computed Tomography, CT) 11 2.2.2. DICOM 12 2.2.3. 3D Slicer逆向重建 13 2.2.4. Geomagic Studio後處理優化 14 2.3. 顱骨骨釘之植入模擬 15 2.4. 積層製造打樣製程 21 2.4.1. 積層製造 21 2.5. 全球與國內專利 24 2.5.1. 螺絲固定 25 2.5.2. 作動機構 27 第三章、研究方法 30 3.1. 連續裝填機構設計與製作 32 3.1.1. 連續裝填機構功能規劃 33 3.1.2. 骨釘座設計 34 3.1.3. 旋轉匣設計 35 3.1.4. 連續裝填機構設計 36 3.1.5. 連續裝填機構之FDM打樣 38 3.1.6. 連續裝填機構之SLA打樣 39 3.2. 顱骨骨釘植入模擬與實驗 40 3.2.1. 模擬之機械性質設定 42 3.2.2. 接觸及邊界條件設定 48 3.2.3. 骨釘植入實驗 55 第四章、機構設計與植入實驗驗證結果 61 4.1. 連續裝填機構機構設計打樣與運作測試 61 4.1.1. 骨釘座、旋轉匣及外殼組裝 62 4.1.2. 連續連續裝填機構測試 67 4.2. 骨釘植入模擬分析結果 70 4.3. 骨釘植入實驗結果 78 4.3.1. 豬顱骨製作結果 78 4.3.2. 顱骨骨釘植入實驗結果 80 第五章、結論與未來展望 83 5.1. 結論 83 5.2. 未來展望 84 附錄(一) 85 附錄(二) 86 附錄(三) 87 附錄(四) 88 附錄(五) 89 附錄(六) 90 附錄(七) 91 附錄(八) 92 附錄(九) 93 附錄(十) 94 參考文獻 95

    [1] Shah, A. M., Jung, H., and Skirboll, S. (2014). Materials used in cranioplasty: a history and analysis. Neurosurgical Focus, 36(4), E19.
    [2] Khader, B. A., and Towler, M. R. (2016). Materials and techniques used in cranioplasty fixation: A review. Materials Science and Engineering. C, Materials for Biological Applications, 66, 315–322.
    [3] 何謂顱骨成型術,國軍臺中總醫院. Retrieved from https://803.mnd.gov.tw/place/hnews1/%E4%BD%95%E8%AC%82%E9%A1%B1%E9%AA%A8%E6%88%90%E5%9E%8B%E8%A1%93/
    [4] Aydin, S., Kucukyuruk, B., Abuzayed, B., Aydin, S., and Sanus, G. Z. (2011). Cranioplasty: Review of materials and techniques. Journal of Neurosciences in Rural Practice, 2(2), 162–167.
    [5] Blake D. P. (1994). The use of synthetics in cranioplasty: a clinical review. Military Medicine, 159(6), 466–469.
    [6] Alkhaibary, A., Alharbi, A., Alnefaie, N., Oqalaa Almubarak, A., Aloraidi, A., and Khairy, S. (2020). Cranioplasty: A Comprehensive Review of the History, Materials, Surgical Aspects, and Complications. World Neurosurgery, 139, 445–452.
    [8] MRI(磁振造影)和CT(電腦斷層)有何不同, 康寧醫療財團法人康寧醫院. Retrieved from http://www.knh.org.tw/sub/health/49/290.
    [9] Petrik, V., Apok, V., Britton, J. A., Bell, B. A., and Papadopoulos, M. C. (2006). Godfrey Hounsfield and the dawn of computed tomography. Neurosurgery, 58(4), 780–787.
    [10] 電腦斷層檢查簡介, 中國醫藥大學附設醫院.
    Retrieved from https://www.cmuh.cmu.edu.tw/HealthEdus/Det
    ail?no=5640
    [11] Introduction and Overview, DICOM Standard. Retrieved from https://www.dicomstandard.org/standards/view/introduction-overview
    [12] Mildenberger, P., Eichelberg, M., and Martin, E. (2002). Introduction to the DICOM standard. European Radiology, 12(4), 920–927.
    [13] Bidgood, W. D., Jr, Horii, S. C., Prior, F. W., and Van Syckle, D. E. (1997). Understanding and using DICOM, the data interchange standard for biomedical imaging. Journal of the American Medical Informatics Association, 4(3), 199–212.
    [14] Robles, M., Carew, R. M., Morgan, R. M., and Rando, C. (2020). A step-by-step method for producing 3D crania models from CT Data. Forensic Imaging, 23, 200404.
    [15] Pieper, S., Lorensen, B., Schroeder, W., and Kikinis, R. The na-mic kit: Itk, VTK, pipelines, grids and 3D slicer as an open platform for the Medical Image Computing Community. 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006.
    [16] 3D Slicer Official Website. Retrieved from https://www.slicer.org/.
    [17] 成思源, Geomagic Studio 逆向建模技術及應用. 清華大學出版社, 2016.
    [18] Rahmoun, J., Auperrin, A., Delille, R., Naceur, H., and Drazetic, P. (2014). Characterization and micromechanical modeling of the human cranial bone elastic properties. Mechanics Research Communications, 60, 7–14.
    [19] Hardy, C. H., and Marcal, P. V. (1973). Elastic analysis of a skull. Journal of Applied Mechanics, 40(4), 838–842.
    [20] Sahoo, D., Deck, C., Yoganandan, N., and Willinger, R. (2013). Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture. Journal of the Mechanical Behavior of Biomedical Materials, 28, 340–353.
    [21] Cai, Z., Xia, Y., Bao, Z., and Mao, H. (2019). Creating a human head finite element model using a multi-block approach for predicting skull response and brain pressure. Computer Methods In Biomechanics and Biomedical Engineering, 22(2), 169–179.
    [22] Affes, F., Ketata, H., Kharrat, M., and Dammak, M. (2018). How a pilot hole size affects osteosynthesis at the screw-bone interface under immediate loading. Medical Engineering and Physics, 60, 14–22.
    [23] Dorogoy, A., Rittel, D., Shemtov-Yona, K., and Korabi, R. (2017). Modeling Dental Implant insertion. Journal of the Mechanical Behavior of Biomedical Materials, 68, 42–50.
    [24] Guan, H., van Staden, R. C., Johnson, N. W., and Loo, Y.-C. (2011). Dynamic modelling and simulation of dental implant insertion process—a finite element study. Finite Elements in Analysis and Design, 47(8), 886–897.
    [25] Ovesy, M., Indermaur, M., and Zysset, P. K. (2019). Prediction of insertion torque and stiffness of a dental implant in bovine trabecular bone using explicit micro-finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 98, 301–310.
    [26] Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Wang, C. C. L., Shin, Y. C., Zhang, S., and Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 69, 65–89.
    [27] Wikipedia. Fused filament fabrication - Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Fused_filament_fabrication.
    [28] How Stereolithography or SLA 3D Printing Works? , MANUFACTUR3D. Retrieved from https://manufactur3dmag.com/stereolithography-sla-3d-printing-works/.
    [29] Habermehl, G.L., Screwdriving apparatus for use in driving screws joined together in a strip. 1994, Simpson Strong Tie Corporation, Canada.
    [30] Rudolf J., Fastener package. 1976, Bulten Kanthal AB,United States.
    [31] Potucek, F.R., Fastener feed apparatus and method. 1977, Duo Fast Corporation, United States.
    [32] Hale, T., Fastener driving system with precision fastener guide. 2013, Simpson Strong Tie Corporation, Australia.
    [33] Damratowski, H.E., Air-powered, self-feeding screw driving tool. 1975, Triad Fastener Corporation, United States.
    [34] Roman, D., Multiple screw delivery apparatus. 2004, Zimmer Biomet CMF and Thoracic Limited Liability Company. United States.
    [35] Ballard, R.R, Gravity feed implant dispenser. 2006, Warsaw Orthopedic Corporation, United States.
    [36] Nicolas F. B., Automatic screwdriver with screw cartridge. 2022, Stryker European Operations Holdings Limited Liability Company, European Patent Office.
    [37] Lillie, E. M., Urban, J. E., Lynch, S. K., Weaver, A. A., and Stitzel, J. D. (2015). Evaluation of skull cortical thickness changes with age and sex from computed tomography scans. Journal of Bone and Mineral Research, 31(2), 299–307.
    [38] Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1–2), 231–236.
    [39] D.S., Abaqus/Explicit Version 6.14-2, Abaqus Documentation. 2014.
    [40] Choubey, A., Basu, B., and Balasubramaniam, R. (2004). Tribological behaviour of TI-based alloys in simulated body fluid solution at fretting contacts. Materials Science and Engineering: A, 379(1–2), 234–239.
    [41] Taylor, M. Things to Make and Do, part 1: Pig Skull (off-topic). 2009; Retrieved from https://svpow.com/2009/07/01/things-to-make-and-do-part-1-pig-skull-off-topic/.
    [42] 黎麗明、黃德儀. 骨骼標本製作. 2000; Retrieved fromhttps://www.eduhk.hk/apfslt/issue_1/lmc_bio/BEng(skeleton)_manual.htm.
    [43] Huiyu, H., Chengyong, W., Yue, Z., Yanbin, Z., Linlin, X., Guoneng, X., Danna, Z., Bin, C., and Haoan, C. (2017). Investigating bone chip formation in craniotomy. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231(10), 959–974.
    [44] Ender-3 S1介紹, CTER 3D Printer Shop. Retrieved from https://cter.tw/pages/ender3-s1.
    [45] FEPshop. Ackuretta Freeshape 120. Retrieved from https://fepshop.com/shop/printers/ackuretta-freeshape-120/.
    [46] Evans, F. G., and Lissner, H. R. (1957). Tensile and compressive strength of human parietal bone. Journal of Applied Physiology, 10(3), 493–497.
    [47] McElhaney, J. H., Fogle, J. L., Melvin, J. W., Haynes, R. R., Roberts, V. L., and Alem, N. M. (1970). Mechanical properties on cranial bone. Journal of Biomechanics, 3(5), 495–511.
    [48] Ashby, M. F., and Medalist, R. F. (1983). The mechanical properties of cellular solids. Metallurgical Transactions A, 14(9), 1755–1769.
    [49] Peterson, J., and Dechow, P. C. (2003). Material properties of the human cranial vault and zygoma. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 274(1), 785–797.
    [50] Coats, B., and Margulies, S. S. (2006). Material properties of human infant skull and suture at high rates. Journal of Neurotrauma, 23(8), 1222–1232.
    [51] Moilanen, P., Nicholson, P. H., Kilappa, V., Cheng, S., and Timonen, J. (2007). Assessment of the cortical bone thickness using ultrasonic guided waves: modelling and in vitro study. Ultrasound in Medicine and Biology, 33(2), 254–262.
    [52] Chamrad, J., Marcián, P., and Borák, L. (2018). On the level of computational model of a human skull: A comparative study. Applied and Computational Mechanics, 12(1).
    [53] Barbosa, A., Fernandes, F. A. O., Alves de Sousa, R. J., Ptak, M., and Wilhelm, J. (2020). Computational Modeling of Skull Bone Structures and Simulation of Skull Fractures Using the YEAHM Head Model. Biology, 9(9), 267.
    [54] Fernandes, M.G., Fonseca, E.M., Jorge, R.M., Manzanares, M.C., Dias, M.I., and Alto Douro, Q.D. (2018). Effect of drill speed on the strain distribution during drilling of bovine and human bones. Journal of Mechanical Engineering and Biomechanics, 2(5), 74.
    [55] Czosnyka, M., and Pickard, J. D. (2004). Monitoring and interpretation of intracranial pressure. Journal of Neurology, Neurosurgery, and Psychiatry, 75(6), 813–821.
    [56] Motherway, J. A., Verschueren, P., Van der Perre, G., Vander Sloten, J., and Gilchrist, M. D. (2009). The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. Journal of Biomechanics, 42(13), 2129–2135.
    [57] Yoganandan, N., Pintar, F. A., Zhang, J., and Baisden, J. L. (2009). Physical properties of the human head: mass, center of gravity and moment of inertia. Journal of Biomechanics, 42(9), 1177–1192.
    [58] Bright, J. A., and Rayfield, E. J. (2011). The response of cranial biomechanical finite element models to variations in mesh density. Anatomical Record (Hoboken, N.J. : 2007), 294(4), 610–620.
    [59] Li, S., Demirci, E., and Silberschmidt, V. V. (2013). Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. Journal of the Mechanical Behavior of Biomedical Materials, 21, 109–120.
    [60] Alam, K., Khan, M., and Silberschmidt, V. V. (2014). 3D finite-element modelling of drilling cortical bone: Temperature analysis. Journal of Medical and Biological Engineering, 34(6), 618-623.
    [61] Auperrin, A., Delille, R., Lesueur, D., Bruyère, K., Masson, C., and Drazétic, P. (2014). Geometrical and material parameters to assess the macroscopic mechanical behaviour of fresh cranial bone samples. Journal of Biomechanics, 47(5), 1180–1185.
    [62] Fernandes, M. G., Fonseca, E. M., Jorge, R. N., Vaz, M., and Dias, M. I. (2017). Thermal analysis in drilling of ex vivo bovine bones. Journal of Mechanics in Medicine and Biology, 17(05), 1750082.
    [63] Aghvami, M., Brunski, J. B., Serdar Tulu, U., Chen, C. H., and Helms, J. A. (2018). A Thermal and Biological Analysis of Bone Drilling. Journal of Biomechanical Engineering, 140(10), 1010101–1010108.
    [64] Fernandes, M. G., Fonseca, E. M., and Jorge, R. N. (2017). Thermo-mechanical stresses distribution on bone drilling: Numerical and experimental procedures. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(4), 637–646.
    [65] Marcián, P., Narra, N., Borák, L., Chamrad, J., and Wolff, J. (2019). Biomechanical performance of cranial implants with different thicknesses and material properties: A finite element study. Computers in Biology and Medicine, 109, 43–52.
    [66] Pan, C. Y., Liu, P. H., Tseng, Y. C., Chou, S. T., Wu, C. Y., and Chang, H. P. (2019). Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants. Journal of Dental Sciences, 14(4), 383–388.
    [67] Muaz, M., and Choudhury, S. K. (2020). A realistic 3D finite element model for simulating multiple rotations of modified milling inserts using coupled temperature-displacement analysis. The International Journal of Advanced Manufacturing Technology, 107(1–2), 343–354.
    [68] Tilton, M., Lewis, G. S., Bok Wee, H., Armstrong, A., Hast, M. W., and Manogharan, G. (2020). Additive Manufacturing of fracture fixation implants: Design, material characterization, biomechanical modeling and experimentation. Additive Manufacturing, 33, 101137.
    [69] Gholampour, S., Hassanalideh, H. H., Gholampour, M., and Frim, D. (2021). Thermal and physical damage in skull base drilling using gas cooling modes: FEM simulation and experimental evaluation. Computer Methods and Programs in Biomedicine, 212, 106463.

    無法下載圖示 全文公開日期 2033/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE