簡易檢索 / 詳目顯示

研究生: 林敬倫
JING-LUN LIN
論文名稱: 應用虛擬慣量技術於微電網電池儲能系統之輔助服務
Applying virtual inertia technology to microgrid battery energy storage system for ancillary service
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 楊明達
Ming-Ta Yang
陳坤隆
Kun-Long Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 156
中文關鍵詞: 再生能源儲能系統電力品質輔助服務虛擬慣量微電網
外文關鍵詞: renewable energy, energy storage system, power quality, ancillary services, virtual inertia, microgrid
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為配合國際再生能源發展之趨勢,我國訂定了能源轉型政策,規劃2025 年再生能源發電佔比達20 %之政策目標。然而再生能源發電易受環境因素影響且其主要透過電力電子轉換器與系統併網。當再生能源發電佔比過高時,其發電不穩定將影響系統之供電可靠度。增設具備輔助服務功能的儲能系統(ESS)可有效用來提高系統供電可靠度及系統頻率穩定度,ESS之輔助服務功能主要包括:頻率控制、電壓穩定與虛擬慣量之提供等。
    本論文提出具備虛擬慣量控制技術之ESS結合主動式濾波器,實現:(1)微電網運轉於併網模式時,應用瞬時功率理論執行頻率控制與電壓穩定之輔助服務,完成不同條件下之補償,並考慮ESS之有限輸出容量,加入動態電力品質補償策略,決定無效功率、不平衡與諧波之補償優先順序,以提高ESS之使用效率;(2)微電網運轉於孤島模式時,應用虛擬慣量技術,以增加電力系統之頻率穩定性。最後以Matlab/Simulink建立儲能系統架構,於不同模擬情境下驗證ESS輸出成效。模擬結果顯示,微電網運轉於併網模式時,ESS可提高其使用效率;微電網運轉於孤島模式時,ESS可提供虛擬慣量以維持微電網之頻率穩定。


    In order to comply with the development trend of the world’s renewable energy, my country has formulated an energy transition policy, and plans that the proportion of renewable energy power generation in 2025 must reach the policy target of 20% of the total power generation. However, renewable power generation is susceptible to environmental factors and is mainly connected to the power grid through power converters. When the proportion of renewable power generation is too high, its power generation instability will affect the reliability of the power grid. The addition of an energy storage system (ESS) with auxiliary service functions can be effectively used to improve the reliability and the frequency stability of the power grid. ESS auxiliary service functions mainly include: frequency control, voltage stabilization, and provision of virtual inertia.
    This thesis proposes an ESS with virtual inertia control technology combined with active filters. The proposed technology can realize (1) When the microgrid is operating in grid-connected mode, the instantaneous power theory is applied to perform auxiliary services of frequency control and voltage stabilization for completing compensation under different conditions. In addition, considering the limited output capacity of the ESS, a dynamic power quality compensation strategy is added to determine the priority order of the compensation for reactive power, unbalance and harmonics, so as to improve the efficiency of the ESS. (2) When the microgrid operates in island mode, the virtual inertia technology is applied to increase the frequency stability of the power grid. Finally, MATLAB/Simulink was used to establish the ESS framework to verify the output effect of the ESS under different simulation scenarios. Simulation results show that when the microgrid operates in grid-connected mode, the ESS can improve its efficiency. When the microgrid operates in island mode, the ESS can provide a virtual inertia to maintain the frequency of the microgrid.

    中文摘要 V Abstract VII 誌謝 IX 目錄 XI 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 國內外相關研究 2 1.3 研究方法與步驟 3 1.4 論文架構 4 第二章 儲能系統發展現況 7 2.1 前言 7 2.2 再生能源併網對微電網造成之影響 7 2.2.1 電壓 10 2.2.2 頻率 11 2.3 儲能系統介紹 12 2.3.1 機械能 12 2.3.2 化學能 15 2.3.3 電化學能 16 2.4 電池儲能技術 17 2.4.1 電池類型 17 2.5 儲能系統於電力系統之應用 21 2.6 國內相關法規 23 2.7 電力品質指標與管制標準 26 2.7.1 功率因數 27 2.7.2 諧波 28 2.7.3 三相不平衡 30 2.7.4 電壓閃爍 31 2.8 本章小結 34 第三章 輔助服務與虛擬慣量發展現況 37 3.1 前言 37 3.2 系統慣量 37 3.3 輔助服務 39 3.4 虛擬慣量 41 3.4.1 同步發電機模型 42 3.4.2 搖擺方程式 45 3.4.3 頻率-功率響應 47 3.5 本章小結 48 第四章 電池儲能系統控制技術 49 4.1 前言 49 4.2 具有虛擬慣量之電池儲能系統 49 4.3 併網模式下之儲能系統控制 50 4.3.1 克拉克轉換 51 4.3.2 派克轉換 53 4.3.3 瞬時功率理論 55 4.3.4 調頻輔助服務 60 4.4 孤島模式下之儲能系統控制 66 4.4.1 虛擬同步發電機 67 4.5 開關切換方式 69 4.6 控制方塊圖 73 4.7 本章小結 74 第五章 模擬驗證與案例分析 77 5.1 前言 77 5.2 模擬架構與參數 77 5.3 併網模式下之儲能系統控制技術驗證 85 5.3.1 瞬時功率理論驗證 85 5.3.2 調頻輔助服務驗證 89 5.3.3 電力品質補償案例分析 101 5.4 孤島模式下之儲能系統技術驗證 105 5.4.1 虛擬慣量技術驗證 105 5.5 本章小結 122 第六章 結論與未來研究方向 123 6.1 結論 123 6.2 未來研究方向 124 參考文獻 127

    [1] IRENA, “Renewable Capacity Statistics 2021,” International Renewable Energy Agency, Abu Dhabi, United Arab Emirates, Technical Report, March, 2021.
    [2] B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M. Hodge, and B. Hannegan, “Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy,” IEEE Power and Energy Magazine, vol. 15, no. 2, Mar-Apr. 2017.
    [3] M. M. Hussein, T. Senjyu, M. Orabi, M. A. A. Wahab and M. M. Hamada, "Control of a variable speed stand alone wind energy supply system," Proc. of 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, pp. 71-76, Dec. 2012.
    [4] R. Yan, T. K. Saha, N. Modi, N. A. Masood, and M. Mosadeghy, “The combined effects of high penetration of wind and PV on power system frequency response,” Applied Energy, vol. 145, pp. 320-330, May 2015.
    [5] C. Y. Liu, X. Lei, S. L. Hu, H. D. Zhou and X. B. Fan, “Research of comprehensive application of intelligent low-voltage power distribution units in improving power quality,” Proc. of 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, pp. 551-554, Sept. 2018.
    [6] A. Ghosh and A. Joshi, “A new approach to load balancing and power factor correction in power distribution system,” IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 417-422, Jan. 2000.
    [7] K. Al-Haddad, “Power quality issues under constant penetration rate of renewable energy into the electric network,” Proc. of 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC), Ohrid, Macedonia, vol. 6, no. 8, pp. S11–39-S11–49, Sept. 2010.
    [8] I. I. Abdalla, K. S. R. Rao, and N. Perumal, “Harmonics mitigation and power factor correction with a modern three-phase four-leg shunt active power filter,” Proc. of 2010 IEEE International Conference on Power and Energy (PECon), Kuala Lumpur, Malaysia, pp. 156-161, Dec. 2010.
    [9] B. Singh, K. Al-Haddad and A. Chandra, "A review of active filters for power quality improvement," in IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 960-971, Oct. 1999
    [10] J. C. Das, "Passive filters - potentialities and limitations," in IEEE Transactions on Industry Applications, vol. 40, no. 1, pp. 232-241, Jan.-Feb. 2004
    [11] H. Akagi, "Trends in active power line conditioners," in IEEE Transactions on Power Electronics, vol. 9, no. 3, pp. 263-268, May 1994
    [12] H. Akagi, "New trends in active filters for power conditioning," in IEEE Transactions on Industry Applications, vol. 32, no. 6, pp. 1312-1322, Nov.-Dec. 1996
    [13] K. Karthi, R. Radhakrishnan, J. M. Baskaran and L. S. Titus, "Load compensation with hysteresis current controlled SAPF under unbalanced mains voltage and nonlinear load conditions," Proc. of 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Bangalore, India, pp. 1-6, Nov. 2017.
    [14] 廖聰明、林倉全,「模組化主動電力濾波器之研製」,中華民國第二十屆電力工程研討會, pp. 36-41, 1999.
    [15] E. C. Sekaran, N. A. Ponna, C. Palanisamy, "Analysis and simulation of a new shunt active power filter using cascaded multilevel inverter", Journal of Electric Engineering, vol. 58, no. 5, pp. 241-249, Jan. 2007.
    [16] I. A. Izzeldin, K.S. Rama Rao, N. Perumal, "Seven-level cascaded inverter based shunt active power filter in four-wire distribution system", Proc. of 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), Singapore, pp. 676-681, Dec. 2011.
    [17] S. Biricik, H. Komurcugil, "Three-level hysteresis current control strategy for three-phase four-switch shunt active filters", IET Power Electron., vol. 9, no. 8, pp. 1732-1740, Jun. 2016.
    [18] O. Vodyakho, T. Kim, S. Kwak, "Three-level inverter based active power filter for the three-phase four-wire system", Proc. of IEEE Power Electronics Specialists Conference, Rhodes, Greece, pp. 1874-1880, Jun. 2008.
    [19] O. Vodyakho and C. C. Mi, "Three-level inverter-based shunt active power filter in three-phase three-wire and four-wire systems", IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1350-1363, May 2009.
    [20] X. Zhou, F. Tang, P. C. Loh, X. Jin and W. Cao, "Four-leg converters with improved common current sharing and selective voltage-quality enhancement for islanded microgrids," in IEEE Transactions on Power Delivery, vol. 31, no. 2, pp. 522-531, Apr. 2016.
    [21] U. Tamrakar, D. Shrestha, M. Maharjan, B. P. Bhattarai, T. M. Hansen, R. Tonkoski, “Virtual inertia: current trends and future directions,” Applied Sciences, vol. 7, no. 7, pp. 654-682, Apr. 2017
    [22] Q. C. Zhong, G. Weiss, “Synchronverters: inverters that mimic synchronous generators,” in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, Apr. 2011.
    [23] Q. C. Zhong, T. Hornik, “Sinusoid-locked loops,” in Control of Power Inverters in Renewable Energy and Smart Grid Integration, Wiley-IEEE Press, pp. 379–392, 2012.
    [24] C. H. Zhang, Q. C. Zhong, J. S. Meng, X. Chen, Q. Huang, S. H. Chen, Z. P. Lv, “An improved synchronverter model and its dynamic behaviour comparison with synchronous generator,” Proc. of 2nd IET Renewable Power Generation Conference (RPG 2013), Beijing, China, pp. 1-4, Sept. 2013.
    [25] Q. C. Zhong, P. L. Nguyen, Z. Ma and W. Sheng, “Self-Synchronized Synchronverters: Inverters Without a Dedicated Synchronization Unit,” in IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 617-630, Feb. 2014
    [26] Z. Ma, Q. C. Zhong and J. D. Yan, "Synchronverter-based control strategies for three-phase PWM rectifiers," Proc. of 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, pp. 225-230, Jul. 2012.
    [27] R. Hesse, D. Turschner, H. Beck, “Micro grid stabilization using the virtual synchronous machine (VISMA),” Proc. of the International Conference on Renewable Energies and Power Quality, Valencia, Spain, vol. 1, pp. 676-681, Apr. 2009.
    [28] C. Yong and H. Ralf and T. Dirk and H. P. Beck, “Dynamic properties of the virtual synchronous machine (VISMA),” Proc. of the International Conference on Renewable Energies and Power Quality, Clausthal-Zellerfeld, Germany, pp. 755-759, May 2011.
    [29] Y. Hirase, K. Abe, K. Sugimoto, Y. Shindo, “A grid-connected inverter with virtual synchronous generator model of algebraic type,” IEEJ Transactions on Power and Energy, Vol. 132, No. 4, pp. 371-380, Apr. 2012
    [30] K. Sakimoto, Y. Miura, and T. Ise, “Characteristics of parallel operation of inverter-type distributed generators operated by a virtual synchronous generator,” IEEJ Transactions on Power and Energy, vol. 133, pp.186-194, Feb. 2013.
    [31] P. Rodriguez, I. Candela and A. Luna, "Control of PV generation systems using the synchronous power controller," Proc. of 2013 IEEE Energy Conversion Congress and Exposition, Denver, USA, pp. 993-998, Sept. 2013.
    [32] W. Zhang, D. Remon, A. Mir, A. Luna, J. Rocabert, I. Candela, P. Rodriguez, “Comparison of different power loop controllers for synchronous power controlled grid-interactive converters,” Proc. of 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, Canada, pp. 3780-3787, Sept. 2015.
    [33] J. Liu, Y. Miura and T. Ise, "Dynamic characteristics and stability comparisons between virtual synchronous generator and droop control in inverter-based distributed generators," Proc. of 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), Hiroshima, Japan, pp. 1536-1543, May 2014
    [34] J. Alipoor, Y. Miura and T. Ise, "Power system stabilization using virtual synchronous generator with alternating moment of inertia," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451-458, Jun. 2015
    [35] T. Shintai, Y. Miura and T. Ise, "Reactive power control for load sharing with virtual synchronous generator control," Proc. of the 7th International Power Electronics and Motion Control Conference, Harbin, China, pp. 846-853, Jun. 2012
    [36] K. Sakimoto, Y. Miura and T. Ise, “Stabilization of a power system with a distributed generator by a virtual synchronous generator function,” Proc. of 8th International Conference on Power Electronics - ECCE Asia, Jeju, South Korea, pp. 1498-1505, Jun. 2011.
    [37] W. Zhang, A. M. Cantarellas, J. Rocabert, A. Luna and P. Rodriguez, "Synchronous power controller with flexible droop characteristics for renewable power generation systems," in IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1572-1582, Oct. 2016.
    [38] M. A. Torres L., L. A. C. Lopes, L. A. Morán T. and J. R. Espinoza C., "Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control," in IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 833-840, Dec. 2014.
    [39] M. Torres and L. A. C. Lopes, "Virtual synchronous generator control in autonomous wind-diesel power systems," Proc. of 2009 IEEE Electrical Power & Energy Conference (EPEC), Montreal, Canada, pp. 1-6, Oct. 2009.
    [40] K. Shi, H. Ye, W. Song and G. Zhou, "Virtual inertia control strategy in microgrid based on virtual synchronous generator technology," in IEEE Access, vol. 6, pp. 27949-27957, May 2018.
    [41] X. ZHANG, C. QU and A. KONG, "Coordinate power control of DFIGs based on virtual synchronous machine," Proc. of 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, pp. 977-981, Apr. 2021.
    [42] Q. Peng, Z. Tang, Y. Yang, T. Liu and F. Blaabjerg, "Event-triggering virtual inertia control of PV systems with power reserve," in IEEE Transactions on Industry Applications, May 2021.
    [43] M. Khatibi, S. Ahmed and N. Kang, "Multi-mode operation and control of a Z-source virtual synchronous generator in PV systems," in IEEE Access, vol. 9, pp. 53003-53012, Feb. 2021
    [44] N. Jain, A. Gupta, “Comparison between two compensation current control methods of shunt active power filter,” International Journal of Engineering Research and General Science, vol. 2, pp. 603-615, Aug. 2014.
    [45] T. Furuhashi, S. Okuma and Y. Uchikawa, "A study on the theory of instantaneous reactive power," in IEEE Transactions on Industrial Electronics, vol. 37, no. 1, pp. 86-90, Feb. 1990.
    [46] F. Z. Peng, H. Akagi and A. Nabae, "A study of active power filters using quad-series voltage-source PWM converters for harmonic compensation," in IEEE Transactions on Power Electronics, vol. 5, no. 1, pp. 9-15, Jan. 1990.
    [47] H. Akagi, A. Nabae and S. Atoh, "Control strategy of active power filters using multiple voltage-source PWM converters," in IEEE Transactions on Industry Applications, vol. IA-22, no. 3, pp. 460-465, May 1986.
    [48] International Renewable Energy Agency. Retrieved Apr. 2021, from https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Country-Rankings.
    [49] 沈柏丞,張嘉諳,許文華,張嘉舫「高占比再生能源對電網影響初論」,臺灣能源期刊,第五卷,第四期,第 299-314 頁,中華民國 107 年 12 月
    [50] A. Hirsch, Y. Parag, J. Guerrero, “Microgrid: a review of technologies, key drives, and outstanding issues,” Renewable and Sustainable Energy Reviews, vol. 90, pp.402-411, Jul. 2018.
    [51] 黃郁文,黃渡根,陳彥均,彭兆川,楊凱平,「國內外再生能源發電系統併網規範研討」,2014年7月。
    [52] M. Torres, L. Lopes, “Virtual synchronous generator: a control strategy to improve dynamic frequency control in autonomous power systems,” Energy and Power Engineering, vol. 5, no. 2, pp. 32-38, Jan. 2013.
    [53] D. Shrestha, U. Tamrakar, Z. Ni and R. Tonkoski, “Experimental verification of virtual inertia in diesel generator based microgrids,” Proc. of 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, Canada, no.22-25, pp. 95-100, Mar. 2017.
    [54] R. Claudia, C. Alfredo, “Fast frequency response capability of photovoltaic power plants: the necessity of new grid requirements and definitions,” Energies, vol. 7, pp. 6306–6322, Sept. 2014.
    [55] L. Chang-Chien, W. Lin and Y. Yin, "Enhancing frequency response control by DFIGs in the high wind penetrated power systems," in IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 710-718, May 2011.
    [56] Explainthatstuff. (2021, April 4). C. Woodford, Flywheels. Retrieved May 2021, from https://www.explainthatstuff.com/flywheels.html.
    [57] Britannica. (2012, January 3) E. Britannica, Flywheel. Retrieved May 2021, from https://www.britannica.com/technology/flywheel.
    [58] 王耀諄,「轉動的奇蹟─飛輪儲能技術簡介」,經濟部能源局,2004年9月
    [59] Webcitation. (2001, October 6) Sandia National Laboratories, Advantages of Using Molten Salt. Retrieved May 2021, from https://www.webcitation.org/60AE7heEZ?url=http://www.sandia.gov/Renewable_Energy/solarthermal/NSTTF/salt.htm
    [60] D. Biello, “How to use solar energy at night,” Scientific American, Feb. 2007
    [61] A. Mathur, R. Kasetty, J Oxley, J Mendez, K. Nithyanandam, “Using encapsulated phase change salts for concentrated solar power plant,” Energy Procedia, vol. 49, pp. 908-915, Jun. 2014
    [62] R. A. Mitran, D. Lincu, L. Buhǎlţeanu, D. Berger, C. Matei, “Shape-stabilized phase change materials using molten NaNO3 - KNO3 eutectic and mesoporous silica matrices,” Solar Energy Materials and Solar Cells, vol. 215, Jun. 2020
    [63] C. Chukwuka, K. A. Folly, “Overview of Four Energy Storage Techniques,” Proc. of 46th International Universities' Power Engineering Conference, pp. 163-166, Jan. 2011.
    [64] 薛康琳,「液流電池技術與儲能應用」,工業材料雜誌,362期,061-067頁,2017
    [65] J. Eyer, G. Corey, “Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide”, SANDIA REPORT, pp. 1-232, Feb. 2010.
    [66] 台灣電力股份有限公司儲能系統併聯技術要點
    [67] 江榮城,電力品質實務 (一 ),台北,全華科技圖書股份有限公司,2000。
    [68] 台灣電力股份有限公司電力系統諧波管制標準
    [69] R. G. Harley, E. B. Makram, E. G. Duran, “Starting transients of induction motors connected to unbalanced networks,” Electric Power System Research, vol. 17, pp. 189-197, May 1989.
    [70] 鐘崇訓,「使用FPGA晶片之電壓閃爍計算」,博士學位論文,國立台灣科技大學電機工程系,2010。
    [71] P. Denholm, T. Mai, R. W. Kenyon, B. Kroposki, M. O’Malley, “Inertia and the power grid: a guide without the spin,” National Renewable Energy Laboratory, May 2020
    [72] A. E. Fitzgerald, C. Kingsley, S. D. Umans.(2003). “Electric Machinery”, New York: McGraw-Hill.

    無法下載圖示 全文公開日期 2024/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE