簡易檢索 / 詳目顯示

研究生: 李維軒
Wei-Hsuan Lee
論文名稱: 以適應性無跡卡爾曼濾波器實現鋰離子電池/超級電容被動式混合儲能系統之估測
Estimation of a Passive Hybrid Energy Storage System (HESS) with Lithium-ion Batteries and Ultracapacitors based on Adaptive Unscented Kalman Filter
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 羅一峰
Yi-Feng Luo
陳亮光
Liang-Kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 326
中文關鍵詞: 被動式混合儲能系統無跡卡爾曼濾波器遞迴最小平方法
外文關鍵詞: Passive Hybrid Energy Storage System, Unscented Kalman Filter, Recursive Least Squares Method
相關次數: 點閱:304下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混合儲能系統(hybrid energy storage system, HESS)是當今新興能源轉型、提升能源使用效率的發展方向。因此,本研究結合高比能量、低比功率的鋰離子電池與高比功率、低比能量的超級電容等兩種性能相反的儲能元件,建構鋰離子電池組與超級電容組等效電路模型與熱動態效應模型,分別透過充放電實驗進行模型驗證,發現電壓與溫度響應受參數影響而有不同表現,與單顆響應趨勢相同。而後將鋰離子電池組與超級電容組並聯連接,完成被動式混合儲能系統。超級電容在暫態期間提供能源輔助,鋰離子電池在穩態期間供應主要能源,透過能源分配可保護鋰離子電池,並以最大限度使用超級電容,來提升電池續航力。另外,採用無跡卡爾曼濾波器(unscented Kalman filter, UKF)為基礎之適應性估測策略,以不同參數組合搭配遞迴最小平方法(recursive least squares method, RLS)來更新參數,對被動式混合儲能系統之多顆鋰離子電池與超級電容進行參數、荷電狀態(state of charge, SOC)、健康狀態(state of health, SOH) 及溫度等進行估測。研究結果顯示,在自然散熱狀態下,使用不同充放電電流行程,鋰離子電池電壓最大絕對誤差小於0.014 V,電壓平均絕對誤差小於0.001 V,溫度最大絕對誤差小於0.009 ℃,溫度平均絕對誤差小於0.001 ℃。超級電容電壓最大絕對誤差小於0.007 V,電壓平均絕對誤差小於0.001 V,溫度最大絕對誤差小於0.009 ℃,溫度平均絕對誤差小於0.001 ℃,且皆在參數估測上具有良好的準確性,預期未來可應用在不同混合儲能系統架構,為能源發展開啟新的思路。


    Hybrid energy storage system (HESS) is the emerging development direction of energy transformation and improving energy efficiency. This study is to combine two energy storage elements with opposite performance, such as lithium-ion battery with high specific energy, low specific power and ultracapacitor with high specific power, low specific energy, and construct the equivalent circuit model and thermal model of the lithium-ion battery pack and the ultracapacitor pack. The models are verified through charge and discharge experiments respectively. The voltage and temperature responses are affected by the parameters and have different performances, which is the same as the trend of a single cell. Then the lithium-ion battery pack is connected in parallel with the ultracapacitor pack to complete the passive hybrid energy storage system. The ultracapacitors provide energy assistance during the transient time, and the lithium-ion batteries supply the main energy during the steady-state time. Through energy distribution, the lithium-ion battery can be protected, and the ultracapacitor can be used to the maximum to improve battery life. In addition, adaptive estimation strategies based on the unscented Kalman filter (UKF) are used to update the parameters with different parameter combinations by using the recursive least squares method (RLS). Estimate the parameters, state of charge (SOC), state of health (SOH), and temperature of lithium-ion batteries and ultracapacitors in the energy storage system. The study result detect that in natural heat dissipation different current cycles. In the lithium-ion battery, the maximum absolute error of voltage is less than 0.014 V, and the mean absolute error of voltage is less than 0.001 V. The maximum absolute error of temperature is less than 0.009 ℃, and the mean absolute error of temperature is less than 0.001 ℃. In the ultracapacitor, the maximum absolute error of voltage is less than 0.007 V, and the mean absolute error of voltage is less than 0.001 V. The maximum absolute error of temperature is less than 0.009 ℃, and the mean absolute error of temperature is less than 0.001 ℃. It has good accuracy in parameter estimation and is expected to be applied to different hybrid energy storage system architectures in the future, to spark off new ideas for energy development.

    摘要 i 英文摘要 ii 誌謝 iii 目錄 x 圖目錄 xviii 表目錄 xxi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.2.1 鋰離子電池之等效電路模型文獻回顧 4 1.2.2 超級電容之等效電路模型文獻回顧 6 1.2.3 鋰離子電池與超級電容之熱動態效應模型文獻回顧 7 1.2.4 估測方法文獻回顧 9 1.2.5 混合儲能系統文獻回顧 10 1.3 研究目的 11 1.4 論文架構 12 第二章 實驗設備與軟體 13 2.1 元件介紹 13 2.1.1 鋰離子電池 13 2.1.2 超級電容 20 2.1.3 鋰離子電池與超級電容比較 26 2.2 硬體設備 28 2.2.1 可程式直流電源供應器 28 2.2.2 直流電子負載機 30 2.2.3 C 系列溫度輸入模組 32 2.2.4 霍爾效應傳感器 34 2.2.5 可程式恆溫恆濕試驗機 36 2.2.6 鋰離子電池保護板 38 2.2.7 工業級萬用型電池點焊機 40 2.2.8 電化學分析儀 42 2.2.9 資料擷取系統 46 2.3 軟體系統 48 2.3.1 MATLAB 與Simulink 48 2.3.2 xPC Target System 49 2.4 實驗設備架構 50 第三章 鋰離子電池與超級電容模型 52 3.1 混合儲能系統 53 3.2 電化學阻抗頻譜法 56 3.2.1 電化學阻抗頻譜法簡介 56 3.2.2 電路元件之阻抗奈氏圖 58 3.3 鋰離子電池等效電路模型 62 3.3.1 高頻寄生電感與歐姆電阻 63 3.3.2 中頻ZARC 元件區域 63 3.3.3 低頻Warburg 元件區域 66 3.3.4 鋰離子電池荷電狀態與開路電壓 69 3.3.5 鋰離子電池完整等效電路 72 3.4 超級電容等效電路模型 75 3.4.1 高頻寄生電感與歐姆電阻 76 3.4.2 中頻Warburg 元件 77 3.4.3 低頻Warburg 修正元件 78 3.4.4 超級電容荷電狀態與開路電壓 82 3.4.5 超級電容完整等效電路 83 3.5 鋰離子電池與超級電容熱動態效應模型 86 3.5.1 鋰離子電池與超級電容熱動態效應模型 86 3.5.2 鋰離子電池與超級電容熱動態效應模型參數鑑別 89 3.5.2.1 鋰離子電池熱動態效應模型參數鑑別 90 3.5.2.2 超級電容熱動態效應模型參數鑑別 91 第四章 適應性估測策略 93 4.1 使用工具 94 4.1.1 隨機變數與隨機變量 94 4.1.2 確定性過程與隨機過程/序列 94 4.1.3 均值 95 4.1.4 變異數與均方差 95 4.1.5 均方誤差 96 4.1.6 共變異數 97 4.1.7 共變異數矩陣 97 4.1.8 相關矩陣、正交過程與正交原理 98 4.2 卡爾曼濾波器 100 4.2.1 卡爾曼濾波器簡介 100 4.2.2 卡爾曼濾波器分類 102 4.2.3 卡爾曼濾波器公式推導 102 4.3 無跡卡爾曼濾波器 111 4.3.1 無跡卡爾曼濾波器簡介 111 4.3.2 無跡卡爾曼濾波器公式推導 113 4.4 最小平方法 119 4.4.1 最小平方法簡介 119 4.4.2 最小平方法公式推導 119 4.5 遞迴最小平方法 122 4.5.1 遞迴最小平方法簡介 122 4.5.2 遞迴最小平方法公式推導 122 4.6 鋰離子電池與超級電容離散方程式 127 4.6.1 鋰離子電池離散方程式 128 4.6.2 超級電容離散方程式 130 4.7 適應性估測策略 132 4.7.1 健康狀態 132 4.7.2 估測策略(1) 133 4.7.2.1 鋰離子電池之估測策略(1) 133 4.7.2.2 超級電容之估測策略(1) 135 4.7.3 估測策略(2) 137 4.7.3.1 鋰離子電池之估測策略(2) 137 4.7.3.2 超級電容之估測策略(2) 140 4.7.4 估測策略(3) 143 4.7.4.1 鋰離子電池之估測策略(3) 143 4.7.4.2 超級電容之估測策略(3) 146 第五章 鋰離子電池組模擬與實驗結果 149 5.1 鋰離子電池組模擬 149 5.2 鋰離子電池組實驗 149 5.3 1.5 A 充電電流行程152 5.3.1 1.5 A 充電電流行程模擬結果 152 5.3.2 1.5 A 充電電流行程實驗結果 157 5.3.3 1.5 A 充電電流行程模擬與實驗結果比較 161 5.4 1.5 A 固定週期性充放電電流行程 164 5.4.1 1.5 A 固定週期性充放電電流行程模擬結果 164 5.4.2 1.5 A 固定週期性充放電電流行程實驗結果 169 5.4.3 1.5 A 固定週期性充放電電流行程模擬與實驗結果比較 173 5.5 NYCC 駕駛電流行程 175 5.5.1 NYCC 駕駛電流行程模擬結果 176 5.5.2 NYCC 駕駛電流行程實驗結果 180 5.5.3 NYCC 駕駛電流行程模擬與實驗結果比較 184 5.6 UDDS 駕駛電流行程 186 5.6.1 UDDS 駕駛電流行程模擬結果 187 5.6.2 UDDS 駕駛電流行程實驗結果 191 5.6.3 UDDS 駕駛電流行程模擬與實驗結果比較 195 第六章 超級電容組模擬與實驗結果 197 6.1 超級電容組模擬 197 6.2 超級電容組實驗 197 6.3 1 A 充電電流行程 200 6.3.1 1 A 充電電流行程模擬結果 200 6.3.2 1 A 充電電流行程實驗結果 205 6.3.3 1 A 充電電流行程模擬與實驗結果比較 209 6.4 1 A 固定週期性充放電電流行程 212 6.4.1 1 A 固定週期性充放電電流行程模擬結果 212 6.4.2 1 A 固定週期性充放電電流行程實驗結果 217 6.4.3 1 A 固定週期性充放電電流行程模擬與實驗結果比較 221 6.5 NYCC 駕駛電流行程 223 6.5.1 NYCC 駕駛電流行程模擬結果 223 6.5.2 NYCC 駕駛電流行程實驗結果 228 6.5.3 NYCC 駕駛電流行程模擬與實驗結果比較 231 6.6 UDDS 駕駛電流行程 233 6.6.1 UDDS 駕駛電流行程模擬結果 233 6.6.2 UDDS 駕駛電流行程實驗結果 238 6.6.3 UDDS 駕駛電流行程模擬與實驗結果比較 241 第七章 被動式混合儲能系統實驗結果 243 7.1 1.5 A 固定週期性充放電電流行程 248 7.1.1 1.5 A 固定週期性充放電電流行程實驗結果 248 7.1.2 1.5 A 固定週期性充放電電流行程模擬與實驗結果比較 252 7.1.3 鋰離子電池B 估測結果 257 7.1.4 超級電容F 估測結果 263 第八章 結論與未來展望 269 8.1 結論 269 8.2 未來展望 271 參考文獻 289 附錄 290 A 參數表 291 B 縮寫表 300

    [1] E. Çam, J. Guyon, Z. Hungerford, J. J. Copier, and M. S. Husek, “Electricity market report 2023,” Gas, Coal and Power Markets (GCP) Division of the International Energy Agency (IEA), 2023.
    [2] 行政院環境保護署, 2022 國家溫室氣體排放清冊報告. 行政院環境保護署, 2022.
    [3] J. Khalfi, N. Boumaaz, and A. Soulmani, “An electric circuit model for a lithium-ion battery cell based on automotive drive cycles measurements,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 4, pp. 2798–2810, 2021.
    [4] M. Chen and G. A. Rincon-Mora, “Accurate electrical battery model capable of predicting runtime and IV performance,” IEEE transactions on energy conversion, vol. 21, no. 2, pp. 504–511, 2006.
    [5] A. Jokar, B. Rajabloo, M. Désilets, and M. Lacroix, “Review of simplified pseudo-two-dimensional models of lithium-ion batteries,” Journal of Power Sources, vol. 327, pp. 44–55, 2016.
    [6] J. Euler and W. Nonnenmacher, “Stromverteilung in porösen elektroden,” Electrochimica Acta, vol. 2, no. 4, pp. 268–286, 1960.
    [7] R. M. Fuoss, “Electrical properties of solids. V II. the system polyvinyl chloridediphenyl,” Journal of the American Chemical Society, vol. 63, no. 2, pp. 378–385, 1941.
    [8] J. R. Macdonald, “Impedance spectroscopy,” Annals of biomedical engineering, vol. 20, pp. 289–305, 1992.
    [9] M. D. Levi and D. Aurbach, “Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium,” The Journal of Physical Chemistry B, vol. 101, no. 23, pp. 4630–4640, 1997.
    [10] J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, and A. Compte, “Anomalous transport effects in the impedance of porous film electrodes,” Electrochemistry Communications, vol. 1, no. 9, pp. 429–435, 1999.
    [11] E. Barsoukov, J. H. Kim, C. O. Yoon, and H. Lee, “Universal battery parameterization to yield a non-linear equivalent circuit valid for battery simulation at arbitrary load,” Journal of power sources, vol. 83, no. 1-2, pp. 61–70, 1999.
    [12] S. Buller, M. Thele, E. Karden, and R. W. De Doncker, “Impedance-based non-linear dynamic battery modeling for automotive applications,” Journal of Power Sources, vol. 113, no. 2, pp. 422–430, 2003.
    [13] G. Liu, L. Lu, H. Fu, J. Hua, J. Li, M. Ouyang, Y. Wang, X. Xue, and P. Chen, “A comparative study of equivalent circuit models and enhanced equivalent circuit models of lithium-ion batteries with different model structures,” 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), pp. 1–6, 2014.
    [14] S. S. Madani, E. Schaltz, and S. Knudsen Kær, “An electrical equivalent circuit model of a lithium titanate oxide battery,” Batteries, vol. 5, no. 1, p. 31, 2019.
    [15] 林筠翔, 鋰離子電池非線性老化行為模式之建模. 國立臺灣科技大學機械工程所碩士論文, 2019, 臺北.
    [16] J. Moškon, J. Žuntar, S. D. Talian, R. Dominko, and M. Gaberšček, “A powerful transmission line model for analysis of impedance of insertion battery cells: a case study on the NMC-Li system,” Journal of The Electrochemical Society, vol. 167, no. 14, p. 140539, 2020.
    [17] Z. Geng, S. Wang, M. J. Lacey, D. Brandell, and T. Thiringer, “Bridging physics-based and equivalent circuit models for lithium-ion batteries,” Electrochimica Acta, vol. 372, p. 137829, 2021.
    [18] L. Zhang, X. Hu, Z. Wang, F. Sun, and D. G. Dorrell, “A review of supercapacitor modeling, estimation, and applications: A control/management perspective,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1868–1878, 2018.
    [19] M. Naim and N. Nafisah, Modelling the ageing behaviour of supercapacitors using electrochemical impedance spectroscopy for dynamic applications. Doctoral dissertation, University of Nottingham, 2015.
    [20] H. v. Helmholtz, “Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern mit anwendung auf die thierisch-elektrischen versuche,” Annalen der Physik, vol. 165, no. 7, pp. 353–377, 1853.
    [21] M. Gouy, “Sur la constitution de la charge électrique à la surface d’un électrolyte,” J. Phys. Theor. Appl., vol. 9, no. 1, pp. 457–468, 1910.
    [22] D. L. Chapman, “LI. a contribution to the theory of electrocapillarity,” The London, Edinburgh, and Dublin philosophical magazine and journal of science, vol. 25, no. 148, pp. 475–481, 1913.
    [23] D. L. Chapman, “Zur theorie der elektrolytischen doppelschicht,” Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol. 30, no. 21-22, pp. 508–519, 1924.
    [24] D. C. Grahame, “The electrical double layer and the theory of electrocapillarity,” Chemical reviews, vol. 41, no. 3, pp. 441–501, 1947.
    [25] R. De Levie, “On porous electrodes in electrolyte solutions: I. capacitance effects,” Electrochimica Acta, vol. 8, no. 10, pp. 751–780, 1963.
    [26] F. Belhachemi, S. Rael, and B. Davat, “A physical based model of power electric double-layer supercapacitors,” Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy, vol. 5, pp. 3069–3076, 2000.
    [27] L. Zubieta and R. Bonert, “Characterization of double-layer capacitors for power electronics applications,” IEEE Transactions on industry applications, vol. 36, no. 1, pp. 199–205, 2000.
    [28] R. Kötz and M. J. E. A. Carlen, “Principles and applications of electrochemical capacitors,” Electrochimica acta, vol. 45, pp. 2483–2498, 2000.
    [29] S. Buller, E. Karden, D. Kok, and R. W. De Doncker, “Modeling the dynamic behavior of supercapacitors using impedance spectroscopy,” Conference Record of the 2001 IEEE Industry Applications Conference, vol. 4, pp. 2500–2504, 2001.
    [30] N. Rizoug, P. Bartholomeus, and P. Le Moigne, “Modeling and characterizing supercapacitors using an online method,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 3980–3990, 2010.
    [31] S. Fletcher, V. J. Black, and I. Kirkpatrick, “A universal equivalent circuit for carbonbased supercapacitors,” Journal of Solid State Electrochemistry, vol. 18, pp. 1377–1387, 2014.
    [32] 黃韋融, 超級電容非線性老化行為模式之建模. 國立臺灣科技大學機械工程所碩士論文, 2014, 臺北.
    [33] J. Lin, X. Liu, S. Li, C. Zhang, and S. Yang, “A review on recent progress, challenges and perspective of battery thermal management system,” International Journal of Heat and Mass Transfer, vol. 167, p. 120834, 2021.
    [34] Y. Chen and J. W. Evans, “Thermal analysis of lithium‐ion batteries,” Journal of the Electrochemical Society, vol. 143, no. 9, p. 2708, 1996.
    [35] B. F. Blackwell, K. J. Dowding, R. J. Cochran, and D. Dobranich, “Utilization of sensitivity coefficients to guide the design of a thermal battery,” ASME International Mechanical Engineering Congress and Exposition, vol. 26744, pp. 73–82, 1998.
    [36] K. E. Thomas and J. Newman, “Thermal modeling of porous insertion electrodes,” Journal of the Electrochemical Society, vol. 150, no. 2, p. A176, 2003.
    [37] J. Schiffer, D. Linzen, and D. U. Sauer, “Heat generation in double layer capacitors,” Journal of Power Sources, vol. 160, no. 1, pp. 765–772, 2006.
    [38] C. Forgez, D. V. Do, G. Friedrich, M. Morcrette, and C. Delacourt, “Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery,” Journal of Power Sources, vol. 195, no. 9, pp. 2961–2968, 2010.
    [39] 鄭文欽, 含熱效應之超級電容等效電路模型. 國立臺灣科技大學機械工程所碩士論文, 2011, 臺北.
    [40] J. Lee, J. Yi, D. Kim, C. B. Shin, K. S. Min, J. Choi, and H. Y. Lee, “Modeling of the electrical and thermal behaviors of an ultracapacitor,” Energies, vol. 7, no. 12, pp. 8264–8278, 2014.
    [41] 陳璟安, 含熱效應之鋰離子電池等效電路模型. 國立臺灣科技大學機械工程所碩士論文, 2017,臺北.
    [42] X. Jin, X. Duan, W. Jiang, Y. Wang, Y. Zou, W. Lei, L. Sun, and Z. Ma, “Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system,” Energy, vol. 216, p. 119234, 2021.
    [43] M. Rawa, S. Alghamdi, A. H. Milyani, F. Hariri, B. Alghamdi, M. Ajour, M. Ćalasan, Z. M. Ali, H. M. Hasanien, B. Popovic, and S. H. A. Aleem, “Thermal model of supercapacitors operating in constant power applications: New mathematical expressions for precise calculation of temperature change,” Journal of Energy Storage, vol. 49, p. 104121, 2022.
    [44] A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner, “Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology,” Journal of Power sources, vol. 80, no. 1-2, pp. 293–300, 1999.
    [45] J. Wu, C. Zhang, and Z. Chen, “An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks,” Applied Energy, vol. 173, pp. 134–140, 2016.
    [46] C. Wang, R. Xiong, J. Tian, J. Lu, and C. Zhang, “Rapid ultracapacitor life prediction with a convolutional neural network,” Applied Energy, vol. 305, p. 117819, 2022.
    [47] D. Zhou, Z. Li, J. Zhu, H. Zhang, and L. Hou, “State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network,” IEEE Access, vol. 8, pp. 53307–53320, 2020.
    [48] Q. Zhao, X. Qin, H. Zhao, and W. Feng, “A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries,” Microelectronics Reliability, vol. 85, pp. 99–108, 2018.
    [49] K. T. Chau, K. C. Wu, C. C. Chan, and W. X. Shen, “A new battery capacity indicator for nickel–metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system,” Energy Conversion and Management, vol. 44, no. 13, pp. 2059–2071, 2003.
    [50] O. Barbarisi, F. Vasca, and L. Glielmo, “State of charge kalman filter estimator for automotive batteries,” Control Engineering Practice, vol. 14, no. 3, pp. 267–275, 2006.
    [51] Y. H. Chiang, W. Y. Sean, and J. C. Ke, “Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles,” Journal of Power Sources, vol. 196, no. 8, pp. 3921–3932, 2011.
    [52] M. Mastali, J. Vazquez-Arenas, R. Fraser, M. Fowler, S. Afshar, and M. Stevens, “Battery state of the charge estimation using kalman filtering,” Journal of Power Sources, vol. 239, pp. 294–307, 2013.
    [53] 鄭偉德, 以數位訊號處理器實現以擴展型卡爾曼濾波器為基礎之超級電容SOC與溫度動態即時估測. 國立臺灣科技大學機械工程所碩士論文, 2013, 臺北.
    [54] 黃科竣, 利用無跡卡爾曼濾波器為基礎實現超級電容充電狀態、溫度及剩餘壽命之即時估測. 國立臺灣科技大學機械工程所碩士論文, 2016, 臺北.
    [55] Z. Chen, L. Yang, X. Zhao, Y. Wang, and Z. He, “Online state of charge estimation of li-ion battery based on an improved unscented kalman filter approach,” Applied Mathematical Modelling, vol. 70, pp. 532–544, 2019.
    [56] 許碩佑, 利用無跡卡爾曼濾波器實現鋰離子電池充電狀態、溫度、健康狀態及剩餘壽命之即時估測. 國立臺灣科技大學機械工程所碩士論文, 2020, 臺北.
    [57] S. Marelli and M. Corno, “Model-based estimation of lithium concentrations and temperature in batteries using soft-constrained dual unscented kalman filtering,” IEEE Transactions on Control Systems Technology, vol. 29, no. 2, pp. 926–933, 2020.
    [58] 周明憲, 以遞迴最小平方法結合無跡卡爾曼濾波器實現鋰離子電池參數、充電狀態、健康狀態及溫度之即時估測. 國立臺灣科技大學機械工程所碩士論文, 2021, 臺北.
    [59] 蔡少桓, 以遞迴最小平方法結合無跡卡爾曼濾波器實現鋰離子電池參數、充電狀態、健康狀態及溫度之即時估測. 國立臺灣科技大學機械工程所碩士論文, 2022, 臺北.
    [60] Y. Liang, S. Wang, Y. Fan, P. Takyi-Aninakwa, Y. Xie, and C. Fernandez, “An error covariance correction-adaptive extended kalman filter based on piecewise forgetting factor recursive least squares method for the state-of-charge estimation of lithium-ion batteries,” Journal of energy storage, vol. 68, p. 107629, 2023.
    [61] J. P. Zheng, T. R. Jow, and M. S. Ding, “Hybrid power sources for pulsed current applications,” IEEE transactions on aerospace and electronic systems, vol. 37, no. 1, pp. 288–292, 2001.
    [62] R. A. Dougal, S. Liu, and R. E. White, “Power and life extension of battery-ultracapacitor hybrids,” IEEE Transactions on components and packaging technologies, vol. 25, no. 1, pp. 120–131, 2002.
    [63] S. Pay and Y. Baghzouz, “Effectiveness of battery-supercapacitor combination in electric vehicles,” 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3, p. 6, 2003.
    [64] G. T. Samson, T. M. Undeland, O. Ulleberg, and P. J. Vie, “Optimal load sharing strategy in a hybrid power system based on PV/fuel cell/battery/supercapacitor,” 2009 International Conference on Clean Electrical Power, pp. 141–146, 2009.
    [65] M. E. Choi, S. W. Kim, and S. W. Seo, “Energy management optimization in a battery/supercapacitor hybrid energy storage system,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 463–472, 2011.
    [66] V. Bolborici, F. P. Dawson, and K. K. Lian, “Hybrid energy storage systems: Connecting batteries in parallel with ultracapacitors for higher power density,” IEEE Industry Applications Magazine, vol. 20, no. 4, pp. 31–40, 2014.
    [67] C. Zhao, H. Yin, and C. Ma, “Equivalent series resistance-based real-time control of battery-ultracapacitor hybrid energy storage systems,” IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 1999–2008, 2019.
    [68] M. K. Azeem, H. Armghan, I. Ahmad, and M. Hassan, “Multistage adaptive nonlinear control of battery-ultracapacitor based plugin hybrid electric vehicles,” Journal of Energy Storage, vol. 32, p. 101813, 2020.
    [69] M. S. Whittingham, “Electrical energy storage and intercalation chemistry,” Science, vol. 192, no. 4244, pp. 1126–1127, 1976.
    [70] Y. Nishi, “Lithium ion secondary batteries; past 10 years and the future,” Journal of Power Sources, vol. 100, pp. 101–106, 2001.
    [71] 黃恒樂, “電池研究院:電池分類與命名大全.” https://www.pcauto.com.cn/tech/2368/23689092.html, Last accessed on 2023-2-13, 2021.
    [72] Second-Life-Storage, “Cell database.” https://secondlifestorage.com/index.php?pages/cell-database/, Last accessed on 2023-2-22.
    [73] 經濟部智慧財產局國際事務及綜合企劃組, “三元材料鋰電池(三元鋰電池).” https://www.tipo.gov.tw/tw/cp-886-895977-005b6-1.html, Last accessed on 2023-2-13, 2021.
    [74] Panasonic, Panasonic NCR18650B Datasheet. Panasonic, Last accessed on 2023-2-22.
    [75] 何冠廷, 陳弘源, 陳燦耀, 方冠榮, and 張家欽, “儲能發展的勁旅─ 鋰離子電池,” 科學發展, vol. 557, pp. 60–65, 2019.
    [76] H. I. Becker, “Low voltage electrolytic capacitor,” U.S. Patent, no. 2800616, 1957.
    [77] D. L. Boos, “Electrolytic capacitor having carbon paste electrodes,” U.S. Patent and Trademark Office, no. 3,536,963, 1970.
    [78] V. V. Jadhav, R. S. Mane, P. V. Shinde, V. V. Jadhav, R. S. Mane, and P. V. Shinde, “Electrochemical supercapacitors: history, types, designing processes, operation mechanisms, and advantages and disadvantages,” Bismuth-Ferrite-Based Electrochemical Supercapacitors, pp. 11–25, 2020.
    [79] Tecate Group, Tecate Group TPLS-100/22 × 45 F Datasheet. Tecate Group, Last accessed on 2023-2-22.
    [80] P. Simon and Y. Gogotsi, “Perspectives for electrochemical capacitors and related devices,” Nature materials, vol. 19, no. 11, pp. 1151–1163, 2020.
    [81] P. K. S. Roy, H. B. Karayaka, J. He, and Y. H. Yu, “Economic comparison between battery and supercapacitor for hourly dispatching wave energy converter power,” 2020 52nd north american power symposium (NAPS), pp. 1–6, 2021.
    [82] A. Townsend and R. Gouws, “A comparative review of lead-acid, lithium-ion and ultra-capacitor technologies and their degradation mechanisms,” Energies, vol. 15, no. 13, p. 4930, 2022.
    [83] K. O. Oyedotun, J. O. Ighalo, J. F. Amaku, C. Olisah, A. O. Adeola, K. O. Iwuozor, K. G. Akpomie, J. Conradie, and K. A. Adegoke, “Advances in supercapacitor development: materials, processes, and applications,” Journal of Electronic Materials,
    vol. 52, no. 1, pp. 96–129, 2023.
    [84] IDRC 擎宏電子, DSP-HR Series DSP-HD Series 可程式直流電源供應器操作手冊. IDRC 擎宏電子, Last accessed on 2023-1-13.
    [85] PRODIGIT 博計電子, 3310F 系列電子負載(抽取式模組) 使用手冊. PRODIGIT 博計電子, Last accessed on 2023-1-13.
    [86] National Instruments, NI 9211 Datasheet. National Instruments, Last accessed on 2023-5-24.
    [87] LEM, HY 5 ... 25-P Datasheet. LEM, Last accessed on 2023-7-29.
    [88] GIANT FORCE, 環境測試設備系列規格書. GIANT FORCE, Last accessed on 2023-1-13.
    [89] Handson Technology, 3-Cells Lithium Battery Charger with Protection Datasheet. Handson Technology, Last accessed on 2023-7-29.
    [90] SUNKKO, SUNKKO 737G Datasheet. SUNKKO, Last accessed on 2023-2-6.
    [91] ZAHNER, ZENNIUM Datasheet. ZAHNER, Last accessed on 2023-4-9.
    [92] National Instruments, NI PCI-6229 Datasheet. National Instruments, Last accessed on 2023-6-8.
    [93] 洪維恩, Matlab 程式設計(第2 版). 旗標科技股份有限公司, 2017, 臺北.
    [94] 范文宣, 以xPC Target System 為基礎之即時硬體迴路模擬與應用. 國立成功大學工程科學所碩士論文, 2010, 臺南.
    [95] A. A. Mohamed and D. M. Ali, “Creating real-time operation system based on xpc target kernel,” International Journal of Recent Technology and Engineering, vol. 2, 2013.
    [96] C. DiPaola, “Design, fabrication, and control of an autonomous sorting system for nonferrous metal recycling,” Doctoral dissertation, Rutgers University-School of Graduate Studies, p. 45, 2019.
    [97] J. Gallardo-Lozano, E. Romero-Cadaval, M. I. Milanes-Montero, and M. A. Guerrero-Martinez, “Battery equalization active methods,” Journal of Power Sources, vol. 246, pp. 934–949, 2014.
    [98] S. Hajiaghasi, A. Salemnia, and M. Hamzeh, “Hybrid energy storage system for microgrids applications: A review,” Journal of Energy Storage, vol. 21, pp. 543–570, 2019.
    [99] N. Lohmann, P. Weßkamp, P. Haußmann, J. Melbert, and T. Musch, “Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures
    for aging and fast characterization in time and frequency domain,” Journal of Power Sources, vol. 273, no. 1, pp. 613–623, 2015.
    [100] Y. F. Pulido, C. Blanco, D. Anseán, V. M. García, F. Ferrero, and M. Valledor, “Determination of suitable parameters for battery analysis by electrochemical impedance spectroscopy,” Measurement, vol. 106, pp. 1–11, 2017.
    [101] A. Mertens, I. C. Vinke, H. Tempel, H. Kungl, L. G. J. De Haart, R. A. Eichel, and J. Granwehr, “Quantitative analysis of time-domain supported electrochemical impedance spectroscopy data of li-ion batteries: reliable activation energy determination at low frequencies,” Journal of the Electrochemical Society, vol. 163, no. 7, pp. H521–H527, 2016.
    [102] E. Karden, S. Buller, and R. W. De Doncker, “A frequency-domain approach to dynamical modeling of electrochemical power sources,” Electrochimica Acta, vol. 47, no. 13-14, pp. 2347–2356, 2002.
    [103] H. Nunes, J. Martinho, J. Fermeiro, J. Pombo, S. Mariano, and M. D. R. Calado, “Impedance analysis of a lithium-ion battery using the electrochemical impedance spectroscopy,” 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–7, 2022.
    [104] T. Heil and J. Andreas, “Continuous approximation of the ZARC element with passive components,” Measurement Science and Technology, vol. 32, no. 10, 2021.
    [105] H. Ren, Y. Zhao, S. Chen, and L. Yang, “A comparative study of lumped equivalent circuit models of a lithium battery for state of charge prediction,” International journal of energy research, vol. 43, no. 13, 2019.
    [106] J. A. López-Villanueva, P. Rodríguez-Iturriaga, L. Parrilla, and S. Rodríguez-Bolívar, “A compact model of the ZARC for circuit simulators in the frequency and time domains,” AEU-International Journal of Electronics and Communications, vol. 153, 2022.
    [107] 李根, 以無跡型卡爾曼濾波器為基礎實現鋰離子電池充電狀態及溫度之及時估測. 國立臺灣科技大學機械工程所碩士論文, 2017, 臺北.
    [108] M. Oldenburger, B. Beduerftig, A. Gruhle, F. Grimsmann, E. Richter, R. Findeisen, and A. Hintennach, “Investigation of the low frequency warburg impedance of li-ion cells by frequency domain measurements,” Journal of Energy Storage, vol. 21, pp. 272–280, 2019.
    [109] S. Buller, Impedance-Based Simulation Models for Energy Storage Devices in Advanced Automotive Power Systems. PhD thesis, Institute for Power Electronics and Electrical Drives, RWTH Aachen University, 2003.
    [110] P. Mauracher, Modellbildung und verbundoptimierung bei elektrostrassenfahrzeugen. Verlag der Augustinus-Buchh, 1996.
    [111] C. Brivio, V. Musolino, M. Merlo, and C. Ballif, “A physically-based electrical model for lithium-ion cells,” IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 594–603, 2018.
    [112] W. Y. Chang, “The state of charge estimating methods for battery: A review,” International Scholarly Research Notices, 2013.
    [113] R. L. Spyker and R. M. Nelms, “Classical equivalent circuit parameters for a doublelayer capacitor,” IEEE transactions on aerospace and electronic systems, vol. 36, no. 3, pp. 829–836, 2000.
    [114] R. L. Spyker and R. M. Nelms, “Double layer capacitor/DC-DC converter system applied to constant power loads,” In IECEC 96. Proceedings of the 31st intersociety energy conversion engineering conference, vol. 1, pp. 255–259, 1996.
    [115] R. L. Spyker, Application of double-layer capacitors in power electronic systems. Auburn University, 1997.
    [116] S. Buller, E. Karden, D. Kok, and R. W. De Doncker, “Modeling the dynamic behavior of supercapacitors using impedance spectroscopy,” IEEE transactions on industry applications, vol. 38, no. 6, pp. 1622–1626, 2002.
    [117] L. Gauchia, S. Castaño, and J. Sanz, “New approach to supercapacitor testing and dynamic modelling,” 2010 IEEE Vehicle Power and Propulsion Conference, pp. 1–5, 2010.
    [118] V. Musolino, L. Piegari, and E. Tironi, “New full-frequency-range supercapacitor model with easy identification procedure,” IEEE transactions on industrial electronics, vol. 60, no. 1, pp. 112–120, 2012.
    [119] O. Bohlen, J. Kowal, and D. U. Sauer, “Ageing behaviour of electrochemical double layer capacitors: Part I. experimental study and ageing model,” Journal of Power Sources, vol. 172, no. 1, pp. 468–475, 2007.
    [120] O. Bohlen, J. Kowal, and D. U. Sauer, “Ageing behaviour of electrochemical double layer capacitors: Part II. lifetime simulation model for dynamic applications,” Journal of Power Sources, vol. 173, no. 1, pp. 626–632, 2007.
    [121] K. J. Laidler, “The development of the arrhenius equation,” Journal of chemical Education, vol. 61, no. 6, pp. 494–498, 1984.
    [122] T. M. Bandhauer, S. Garimella, and T. F. Fuller, “A critical review of thermal issues in lithium-ion batteries,” Journal of the Electrochemical Society, vol. 158, no. 3, 2011.
    [123] A. Lewandowski, P. Jakobczyk, M. Galinski, and M. Biegun, “Self-discharge of electrochemical double layer capacitors,” Physical Chemistry Chemical Physics, vol. 15, no. 22, pp. 8692–8699, 2013.
    [124] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of fuilds engineering, pp. 35–45, 1960.
    [125] M. S. Grewal and A. P. Andrews, Kalman filtering: Theory and Practice with MATLAB. John Wiley & Sons, 2014.
    [126] M. Hoshiya and E. Saito, “Structural identification by extended kalman filter,” Journal of engineering mechanics, vol. 110, no. 12, pp. 1757–1770, 1984.
    [127] E. A. Wan and R. V. Der Merwe, “The unscented kalman filter for nonlinear estimation,” Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), pp. 153–158, 2000.
    [128] X. Li, P. Zhang, G. Huang, Q. Zhang, J. Guo, Y. Zhao, and Q. Zhao, “Performance analysis of indoor pseudolite positioning based on the unscented kalman filter,” GPS Solutions, vol. 23, pp. 1–13, 2019.
    [129] K. Nielsen, C. Svahn, H. Rodriguez-Deniz, and G. Hendeby, “UKF parameter tuning for local variation smoothing,” 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 1–8, 2021.
    [130] R. Van Der Merwe and E. Wan, Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. Oregon Health and Science University, 2004.
    [131] A. M. Legendre, Nouvelles méthodes pour la détermination des orbites des comètes. Firmin Didot, 1805.
    [132] C. F. Gauss, Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Frid. Perthes et I. H. Besser, 1809.
    [133] D. E. Wells and E. J. Krakiwsky, The method of least squares. Department of Surveying Engineering, University of New Brunswick, 1971.
    [134] V. Panuska, “An adaptive recursive-least-squares identification algorithm,” 1969 IEEE Symposium on Adaptive Processes (8th) Decision and Control, p. 65, 1969.
    [135] United States Environmental Protection Agency, “Vehicle and fuel emissions testing: Dynamometer drive schedules.” https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules, Last accessed on 2023-7-31, 2022.

    無法下載圖示 全文公開日期 2028/08/03 (校內網路)
    全文公開日期 2028/08/03 (校外網路)
    全文公開日期 2028/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE