簡易檢索 / 詳目顯示

研究生: 鄭智文
Jr-Wen Cheng
論文名稱: 以紫膜生物光電晶片檢測鉛離子及糖化血紅素
Lead ion and HbA1c detections with purple membrane-based photoelectric chips
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 蔡伸隆
Shen-Long Tsai
林景堉
Ching-Yu Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 135
中文關鍵詞: 細菌視紫質生物光電晶片鉛離子糖化血紅素
外文關鍵詞: purple membrane, biochip, lead ion, HbA1c
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 古生嗜鹽菌Halobacterium salinarum 之紫色細胞膜,簡稱紫膜 (purple
    membrane, PM) ,含有細菌視紫質 (bacteriorhodopsin, BR) ,受光激發後會產生
    光循環並將質子從細胞膜內側傳遞到細胞膜外側,形成一個光驅動質子泵
    (light-driven proton pump),再外加電極與導線即可用以產生光電流訊號。我們已
    利用BR 光電流響應與入射光強度呈正向關係之原理,製備出一系列PM 微生物
    光電晶片。本研究共分為兩部分,第一部分先將一組互補的脫氧核酸 (DNAzyme)
    與鍵結有奈米金 (gold nanoparticle, AuNPs) 之基質寡核酸 (substrate oligo) 依序
    塗覆至PM 晶片上,以作為生物辨識分子,並利用AuNPs 可遮光之事實來檢測
    Pb2+。研究中探討晶片製程及最適化檢測條件,並且以PM 感測晶片之光電流與
    拉曼光譜分析,分別確認Pb2+檢測條件及製程可行性。研究發現,PM 感測晶片
    光電流回升程度與Pb2+濃度有關,當Pb2+達1 μM時光電流可有最大回升比例 (97
    %) ;此Pb2+感測晶片具有高選擇性,在最適化條件下,15 分鐘即可完成Pb2+
    檢測,且晶片檢測靈敏度可低達1 nM (0.208 μg/mL) Pb2+,遠小於法規所規定的
    10 μg/mL。第二部分則是延續實驗室先前開發成果,深入探討可分別檢測血紅素
    (hemoglobin, Hb) 與糖化血紅素 (glycated hemoglobin, HbA1c) 之Hb aptamer-PM
    及HbA1c aptamer -PM 複合晶片的最適化aptamer 固定化濃度、Hb 與HbA1c 檢測
    時間以及晶片保存性研究。在調整晶片製程至最適化後,兩者晶片檢量線的靈敏
    度均較原先晶片製程為高;同時發現利用適合添加物,可將Hb 與HbA1c 檢測時
    間由原先的2 小時縮短至15 分鐘。最後發現在最適化條件下保存一個月後,PM
    與Hb aptmaer-PM 複合晶片均仍保有原有活性並可進行檢測,顯示其未來商業化
    之可行性。


    Purple membrane (PM) is one of the cellular membranes of archaeon
    Halobacterium salinarum, containing bacteriorhodopsin (BR), a light-driven proton
    pump capable of transporting a proton across PM upon illumination and subsequently generating photocurrents. Based on the linear dependence of BR photocurrents on illumination intensities, we had developed series of PM-based biosensor. This study contains two parts. First, based on light scattering of gold nanoparticle (AuNPs), a PM chip sequentially coated with DNAzyme and AuNPs-conjugated substrate oligo was used as the recognition element to detect lead ion (Pb2+). Chip fabrication and Pb2+ detection were both optimally investigated and confirmed by both Raman spectroscopy and PM-photocurrent measurement. The recovery of the photocurrent density linearly depended on Pb2+ concentrations, with the highest photocurrent density recovery (97 %) observed at 1 μM Pb2+ of the PM-based sensor chip. The Pb2+ sensor chip had a good selectivity and completed the detection in 15 min, with a detection limit of 1 nM (0.208 μg/mL), which was much lower than the regulation concentration (10 μg/mL). Secondly, we continued our previous hemoglobin (Hb) and glycated hemoglobin (HbA1c) studies with the developed Hb aptamer-PM and HbA1c aptamer-PM chips. By optimizing the fabrication process, the sensitives of both chips increased. In addition, the use of a proper additive speeded up detection, shorten the detection from 2 hr to 15 min. Finally, the stability studies revealed both PM and Hb aptamer-PM chips maintained their activities for at least one month, suggesting their
    potentials in future commercial applications.

    中文摘要 ..................................................................................................................... I Abstract .................................................................................................................... II 致謝 ................................................................................................................... III 目錄 ................................................................................................................... IV 表目錄 ................................................................................................................... VI 圖目錄 ................................................................................................................ VIII 第一章 緒論.................................................................................................................. 1 第二章 文獻回顧.......................................................................................................... 3 2-1 鉛及鉛離子檢測方法 .................................................................................... 3 2-1-1 鉛 ......................................................................................................... 3 2-1-2 飲用水鉛離子檢測標準 ..................................................................... 4 2-1-3 鉛離子檢測方法 ................................................................................. 6 2-1-3-1 以寡核苷酸做為區分.............................................................. 6 2-1-3-2 以檢測方式做為區分.............................................................. 7 2-2 奈米金粒子 (gold nanoparticles, AuNPs) ................................................... 16 2-2-1 奈米金粒子特性 ............................................................................... 16 2-2-2 奈米金粒子於生物傳感器上的應用 ............................................... 17 2-2-3 奈米金粒子應用於PM 晶片 ........................................................... 18 2-2-4 奈米金粒子之熱穩定性探討 ........................................................... 19 2-3 糖化血紅素及糖化血紅素檢測方法 .......................................................... 21 2-3-1 糖化血紅素 (glycated hemoglobin, GHb) ....................................... 21 2-3-2 糖化血紅素檢測方法 ....................................................................... 25 2-3-2-1 酵素分析法............................................................................ 25 2-3-2-3 硼酸親和層析法.................................................................... 29 2-3-2-4 陽離子交換層析法................................................................ 30 2-4 細菌視紫質 (bacteriorhodopsin, BR) ........................................................ 32 2-4-1 Halobacterium salinarum .................................................................. 32 2-4-2 BR 結構.............................................................................................. 33 2-4-3 BR 光循環與質子傳遞...................................................................... 34 2-4-4 BR 光電響應...................................................................................... 36 2-4-5 PM 固定化方法 ................................................................................. 39 2-4-5-1 LB 製備法 (Langmuir-Blodgett film) ................................... 39 2-4-5-2 電場沉積法 (Electric Field Sedimentation) ......................... 40 2-4-5-3 靜電分子自組裝法 (Electrostatic Self-Assembly Technique) .............................................................................................................. 41 2-4-5-4 PM 生物親和性單層定向固定化 .......................................... 42 2-4-6 PM 晶片之微生物檢測應用 ............................................................. 44 第三章 實驗................................................................................................................ 46 3-1 實驗目的 ...................................................................................................... 46 3-2 實驗流程 ...................................................................................................... 48 3-3 量測 .............................................................................................................. 54 3-3-1 微分光電流量測 ............................................................................... 54 3-3-2 拉曼光譜分析 ................................................................................... 55 第四章 結果討論........................................................................................................ 56 4-1 鉛離子檢測PM 生物光電晶片之製程探討 .............................................. 56 4-1-1 以模擬決定寡核苷酸固定化條件 ................................................... 56 4-1-1-1 固定溫度下改變DNAzyme 之固定化Na+離子濃度 ......... 56 4-1-1-2 固定Na+離子濃度下改變DNAzyme 之固定化反應溫度 . 66 4-1-2 以實驗決定DNAzyme 與Substrate oligo-AuNPs 雜合條件......... 72 4-1-3 鉛離子檢測時間探討 ....................................................................... 76 4-1-4 光電流量測電解液與催化反應緩衝液的選擇 ............................... 79 4-1-5 鉛離子檢測PM 生物光電晶片之專一性探討 ............................... 84 4-1-6 拉曼光譜分析 ................................................................................... 89 4-2 Hb aptamer-PM 與HbA1c aptamer-PM 複合晶片之延伸探討 ................... 98 4-2-1 aptamer 固定化濃度探討 ................................................................. 98 4-2-2 aptamer-PM 複合晶片之檢測時間探討 ........................................... 99 4-2-3 aptamer-PM 複合晶片之保存性探討 ............................................. 102 第五章 結論.............................................................................................................. 108 第六章 參考文獻...................................................................................................... 110

    Acikara OB. Ion-exchange chromatography and its applications. In: Martin DF,
    Martin BB (Eds), Column chromatography. InTech, Croatia, 2013, 33-58.
    American Public Health Association (APHA), American Water Works Association
    (AWWA), Water Environment Federation (WEF). Standard methods for the
    examination of water and wastewater, 1999.
    Balashov SP. Protonation reactions and their coupling in bacteriorhodopsin.
    Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2000, 1460:75-94.
    Braiman M, Mathies R. Resonance Raman spectra of bacteriorhodopsin's primary
    photoproduct evidence for a distorted 13-cis retinal chromophore. Proceedings of the
    National Academy of Sciences. 1982, 79:403-407.
    Bunn HF, Haney DN, Gabbay KH, Gallop PM. Further identification of the nature
    and linkage of the carbohydrate in hemoglobin A1c. Biochemical and Biophysical
    Research Communications. 1975, 67:103-109.
    Centers for Disease Control and Prevention (CDC). Preventing lead poisoning in
    young children., Atlanta, GA: US Dept of Health and Human Services, 1991.
    Chen H-M, Jheng K-R, Yu A-D. Direct, label-free, selective, and sensitive microbial
    detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosensors
    and Bioelectronics. 2017, 91:24-31.Chen HM, Lin CJ, Jheng KR, Kosasih A, Chang JY. Effect of graphene oxide on
    affinity-immobilization of purple membranes on solid supports. Colloids and Surfaces
    B: Biointerfaces. 2014, 116:482-488.
    Fell G. Lead toxicity problems of definition and laboratory evaluation. Annals of
    Clinical Biochemistry. 1984, 21:453-460.
    Gao H, Qi X, Chen Y, Sun W. Electrochemical deoxyribonucleic acid biosensor
    based on the self-assembly film with nanogold decorated on ionic liquid modified
    carbon paste electrode. Analytica Chimica Acta. 2011, 704:133-138.
    Hampp N. Bacteriorhodopsin as a photochromic retinal protein for optical memories.
    Chemical Reviews. 2000, 100:1755-1776.
    He J-A, Samuelson L, Li L, Kumar J, Tripathy SK. Bacteriorhodopsin thin film
    assembliesàimmobilization, properties, and applications. Advanced Materials. 1999,
    11:435-466.
    Honzatko RB, Williams RW. Raman spectroscopy of avidin: Secondary structure,
    disulfide conformation, and the environment of tyrosine. Biochemistry. 1982,
    21:6201-6205.
    Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations
    in cancer diagnosis and photothermal therapy. Journal of Advanced Research. 2010,
    1:13-28.Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering
    properties of gold nanoparticles of different size, shape, and composition:
    Applications in biological imaging and biomedicine. The Journal of Physical
    Chemistry B. 2006, 110:7238-7248.
    Jess P, Garcés-Chávez V, Smith D, Mazilu M, Paterson L, Riches A, Herrington C,
    Sibbett W, Dholakia K. Dual beam fibre trap for Raman micro-spectroscopy of single
    cells. Optics Express. 2006, 14:5779-5791.
    Jin Y, Honig T, Ron I, Friedman N, Sheves M, Cahen D. Bacteriorhodopsin as an
    electronic conduction medium for biomolecular electronics. Chemical Society
    Reviews. 2008, 37:2422-2432.
    John G, English E, Milosevich E. In vitro determination of hemoglobin A1c for
    diabetes diagnosis and management: Technology update. Pathology and Laboratory
    Medicine International. 2014.
    Kim JH, Han SH, Chung BH. Improving Pb2+ detection using DNAzyme-based
    fluorescence sensors by pairing fluorescence donors with gold nanoparticles.
    Biosensors and Bioelectronics. 2011, 26:2125-2129.
    Kimura Y, Vassylyev DG, Miyazawa A, Kidera A, Matsushima M, Mitsuoka K,
    Murata K, Hirai T, Fujiyoshi Y. Surface of bacteriorhodopsin revealed by
    high-resolution electron crystallography. Nature. 1997, 389:206-211.Li F, Zhang H, Dever B, Li XF, Le XC. Thermal stability of DNA functionalized gold
    nanoparticles. Bioconjugate Chemistry. 2013, 24:1790-1797.
    Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions.
    Journal of the American Chemical Society. 2000, 122:10466-10467.
    Li T, Wang E, Dong S. Lead(ii)-induced allosteric g-quadruplex DNAzyme as a
    colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+
    detection. Analytical Chemistry. 2010, 82:1515-1520.
    Lin HI, Wu CC, Yang CH, Chang KW, Lee GB, Shiesh SC. Selection of aptamers
    specific for glycated hemoglobin and total hemoglobin using on-chip selex. Lab on a
    Chip. 2015, 15:486-494.
    Marchetti P. Advanced glycation end products (ages) and their receptors (rages) in
    diabetic vascular disease. Medicographia. 2009, 31:257-265.
    Miyasaka T, Koyama K. Image sensing and processing by a bacteriorhodopsin-based
    artificial photoreceptor. Applied Optics. 1993, 32:6371-6379.
    Mozzarelli A, Bruno S, Ronda L. Biochemistry of hemoglobin. In: Kim HW,
    Greenburg AG (Eds), Hemoglobin-based oxygen carriers as red cell substitutes and
    oxygen therapeutics. Springer, New York, 2013, 55-73.Nanjo Y, Hayashi R, Yao T. An enzymatic method for the rapid measurement of the
    hemoglobin A1c by a flow-injection system comprised of an electrochemical detector
    with a specific enzyme-reactor and a spectrophotometer. Analytica Chimica Acta.
    2007, 583:45-54.
    Nath P, Arun RK, Chanda N. Smart gold nanosensor for easy sensing of lead and
    copper ions in solution and using paper strips. RSC Advances. 2015, 5:69024-69031.
    Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. Translating the
    a1c assay into estimated average glucose values. Diabetes care. 2008, 31:1473-1478.
    Pelossof G, Tel-Vered R, Willner I. Amplified surface plasmon resonance and
    electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and
    Hemin/G-Quadruplex as a label. Analytical Chemistry. 2012, 84:3703-3709.
    Roche Diagnostics Limited. Technology turbidimetry - specific proteins. 2017.
    http://www.cobas.com/home/product/clinical-and-immunochemistry-testing/technolo
    gy-turbidimetry-specific-proteins.html.
    Rutyna I, Korolczuk M. Determination of lead and cadmium by anodic stripping
    voltammetry at bismuth film electrodes following double deposition and stripping
    steps. Sensors and Actuators B: Chemical. 2014, 204:136-141.
    Sabban S. Development of an in vitro model system for studying the interaction of
    Equus caballus IgE with its highaffinity FcεRI receptor. PhD dissertation, The
    University of Sheffield, United Kingdom. 2011.Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and
    biological sensing. Chemical Reviews. 2012, 112:2739-2779.
    Sakurabayashi I, Watano T, Yonehara S, Ishimaru K, Hirai K, Komori T, Yagi M.
    New enzymatic assay for glycohemoglobin. Clinical Chemistry. 2003, 2:269–274.
    Sanavio B, Krol S. On the slow diffusion of point-of-care systems in therapeutic drug
    monitoring. Frontiers in Bioengineering and Biotechnology. 2015, 3:1-15.
    Sebastian C, William H. Immunochromatography: Formats and applications. Indo
    American Journal of Pharmaceutical Research. 2016, 7:6400-6417.
    Shi X, Gao X, Zhang L, Li Y, Fan L, Yu HZ. Binary DNA hairpin-based colorimetric
    biochip for simultaneous detection of Pb2+ and Hg2+ in real-world samples. Analyst.
    2015, 140:2608-2612.
    Song SY, Yoon HC. Boronic acid-modified thin film interface for specific binding of
    glycated hemoglobin (HbA1c) and electrochemical biosensing. Sensors and Actuators
    B: Chemical. 2009, 140:233-239.
    United States Environmental Protection Agency (EPA). Drinking water contaminants
    – standards and regulations. 2017. https://www.epa.gov/dwstandardsregulations.
    Wang IS, Lin CT. Glycated hemoglobin detection in clinical blood samples by using
    cmos poly-silicon sub-micron wire biosensor. Procedia Engineering. 2016,
    168:121-124.Wang J. Vectorially oriented purple membrane: Characterization by photocurrent
    measurement and polarized-fourier transform infrared spectroscopy. Thin Solid Film.
    2000, 379:224-229.
    Wang JP, Yoo SK, Song L, El-Sayed MA. Molecular mechanism of the differential
    photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B.
    1997, 101:3420-3423.
    Wang Y, Irudayaraj J. A sers DNAzyme biosensor for lead ion detection. Chem
    Commun (Camb). 2011, 47:4394-4396.
    Water Information System for Europe (WISE). European drinking water directive.
    2018. http://ec.europa.eu/environment/water/water-drink/legislation_en.html.
    Weykamp C. HbA1c: A review of analytical and clinical aspects. Annals of
    Laboratory Medicine. 2013, 33:393-400.
    World Health Organization (WHO). Use of glycated haemoglobin (HbA1c) in the
    diagnosis of diabetes mellitus: Abbreviated report of a WHO consultation., WHO,
    Geneva, 2011, 1-25.
    World Health Organization (WHO). Guidelines for drinking-water quality, WHO,
    Geneva, 2017, 155-200.Yang D, Liu X, Zhou Y, Luo L, Zhang J, Huang A, Mao Q, Chen X, Tang L.
    Aptamer-based biosensors for detection of lead(ii) ion: A review. Analytical Methods.
    2017, 9:1976-1990.
    Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F. A review on functionalized gold
    nanoparticles for biosensing applications. Plasmonics. 2011, 6:491-506.
    林承德. 氧化石墨烯濃度對以親合吸附作用製備細菌視紫質光電晶片之影響.
    國立台灣科技大學化學工程研究所碩士論文. 2013.
    郭力彬. 紫膜生物光電晶片應用於糖化血紅素(HbA1c)檢測之探討. 國立台灣科
    技大學化學工程研究所碩士論文. 2017.
    陳逸航. 定向性細菌視紫質晶片之光電與二倍頻響應探討. 國立台灣科技大學
    化學工程研究所碩士論文. 2010.
    陳冠辰. 適體-細菌視紫質生物光電感測晶片之探討. 國立台灣科技大學化學工
    程研究所碩士論文. 2015.
    鄭凱如. 細菌視紫質泛用型免疫光電晶片製備與原子力顯微鏡分析. 國立台灣
    科技大學化學工程研究所碩士論文. 2012.
    鄭俊義. 紫膜生物光電晶片於牙斑菌檢測之應用. 國立台灣科技大學化學工程研
    究所碩士論文. 2016.
    鄭存孝. 紫膜生物光電晶片檢測寡核苷酸與即時檢測基因合成之應用. 國立台
    灣科技大學化學工程研究所碩士論文. 2017.廖信銓. 微流體於細菌視紫質光電晶片製備之應用. 國立台灣科技大學化學工
    程研究所碩士論文. 2015.
    鍾崇燊, 柯捷男. 科學發展月刊. 2002, (357 期) :52-55.
    周文娟, 吳雲翔, 易軍. 糖化血紅蛋白標準化及其檢測技術的發展. 生物化學
    與生物物理進展. 2015, 42 :443-456.
    中華人民共和國生態環境部. 生活飲用水衛生標準. 1985.
    http://www.mep.gov.cn/hjzli/swrfz/yyssy/201605/t20160522_342104.shtml
    行政院環境保護署. 飲用水水質標準. 2009.
    https://www.water.gov.tw/public/Attachment/46261831081.pdf

    無法下載圖示 全文公開日期 2023/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE