簡易檢索 / 詳目顯示

研究生: 陳泓任
Hong-Ren Chen
論文名稱: 檢測三磷酸腺苷、革蘭氏陽性菌和白血球 之紫膜生物光電晶片之開發
Development of purple membrane-based photoelectric chips for ATP , Gram-positive bacteria and leukocyte detection
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 蔡伸隆
Shen-Long Tsai
林景堉
Ching-Yu Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 167
中文關鍵詞: 跨膜蛋白-細菌視紫質三磷酸腺苷奈米金白血球革蘭氏陽性菌
外文關鍵詞: BR, ATP, AuNPs, Leukocyte, Gram positive bacteria
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 跨膜蛋白-細菌視紫質 (bacteriorhodopsin, BR),被光照射後會吸收光能使質子從細胞膜膜內被推向膜外,因而產生跨膜質子濃度梯度,再透過外部電路連接即可產生光電流訊號。 BR乃來自古生嗜鹽菌Halobacterium salinarum的紫色細胞膜 (purple membrane, PM);先前我們利用BR光電流響應和入射光強度間所呈現的正關係,已開發出PM光電感測晶片。本論文分為三部分,首先將可與三磷酸腺苷 (adenosine triphosphate, ATP) 結合的核酸適體 (ATP aptamer) 固定化於PM晶片上,再將與ATP aptamer部分互補並修飾有奈米金 (gold nanoparticle, AuNPs) 之去氧核酸序列 (complementary DNA, cDNA) 雜合上去,以製備出可檢測ATP之AuNPs-cDNA/ATP aptamer-PM複合晶片。研究以PM光電感測晶片所產生之光電流變化及拉曼光譜分析探討晶片製程及最適化檢測ATP條件。研究證實ATP存在時可與ATP aptamer結合並使AuNPs-cDNA脫附,而造成原本受AuNPs遮蔽之PM光電感測晶片的光電流回升,且此回升率與ATP濃度有關;在最適化條件下,30分鐘即可完成ATP檢測。當ATP濃度為200 μM時,PM光電流回升率可達87.64%,且最低檢測靈敏度可達0.1 nM ATP。其次為白血球 (leukocyte) 檢測晶片之開發,在PM晶片上依序固定化protein A與未被修飾之抗白血球抗體,即可利用白血球可遮光特性,檢測與定量白血球濃度。最後將4種可能與革蘭氏陽性菌 (gram positive) 細胞壁中之壁脂酸 (lipoteichoic acid, LTA) 結合之核酸適體 (LTA aptamer) 直接固定化於PM晶片表面以開發革蘭氏陽性菌檢測晶片,實驗結果發現其中2種LTA aptamer具有較高的微生物結合力,然而其特異性並不佳,有待進一步探討。


    The transmembrane protein, bacteriorhodopsin (BR), absorbs light upon illumination and pumps protons from the cytoplasmic to the extracellular side of its cellular membrane, leading to a transmembrane proton gradient that can be used to generate photocurrents through an external circuit. BR is produced from the purple membrane (PM) of archaeon Halobacterium salinarum. We have previously developed PM-based photoelectric sensor chips based on the positive correlation between BR photocurrents and the incident light intensity. There are three parts in this thesis. In the first part, an ATP aptamer that specifically binds with adenosine triphosphate (ATP) was first immobilized on a PM chip. Complementary DNA (cDNA) partially complementary to the ATP aptamer and conjugated with gold nanoparticles (AuNPs) was hybridized on the ATP aptamer–PM chips to prepare AuNPs-cDNA/ATP aptamer-PM complex chips. The monitoring of the sensor chip production and the optimization of ATP detection conditions were investigated by Raman spectroscopy and photocurrent measurements, which was generated from the PM chips. The results evidenced that ATP binding led to the desorption of AuNPs-cDNA form the ATP aptamer–PM chip and thus caused the photocurrents of the chip to recover, which had been decreased due to the light-shielding effect of AuNPs, The photocurrent recovery level depended on ATP concentrations. ATP detection was accomplished in 30 min at the optimal condition. A 87.64% photocurrent recovery was obtained at 200 μM ATP, and a detection limit of 0.1 nM ATP was achieved. In the second part, leukocyte detection chips were developed by sequentially conjugating protein A and unmodified anti-leukocyte antibodies on PM chips. White blood cells blocked light significantly so that their concentrations were readily determined by the photocurrent reduction level. In the final part, four LTA aptamers with possible lipoteichoic acid (LTA) binding affinity, the major component in the cell wall of Gram-positive cells, were directly immobilized on PM chips to develop Gram-positive bacteria detection chips. The results showed that two of the four LTA aptamers had higher microbial binding abilities than the others, while their specificity needed to be further improved in future studies.

    中文摘要...... I Abstract ....II 致謝........ III 目錄.........IV 圖目錄....... VI 表目錄....... XVI 第 1 章 緒論...1 第 2 章 文獻回顧............4 ATP 檢測及應用 .............4 2-1-1 ATP 檢測方法介紹 .....5 2-1-2 ATP檢測應用 ........ 18 2-2 白血球檢測 ........... 22 2-3 奈米金粒子 (gold nanoparticles , AuNPs) ............... 24 2-3-1 AuNPs 表面電漿共振吸收、消散特性 ......................25 2-3-2 AuNPs 生物相容性 .....................................31 2-4 Halobacterium salinarum 與 bacteriorhodopsin (BR) .....33 2-4-1 BR 結構 ................................... 34 2-4-2 BR光循環與質子傳遞 ................................... 35 2-4-3 BR 光電響應 ...........................................39 2-4-4 PM 生物親和性單層固定化 ........................................................... 41 2-4-5 PM 晶片微生物檢測應用 ............................................................43 2-4-6 AuNPs 應用於 PM生物晶片 ............................................................46 第 3 章 實驗.................................................47 3-1 實驗目的與說明...........................................47 3-2 實驗流程................................................ 49 3-3 量測................................................... 56 3-3-2 拉曼光譜分析...........................................57 第 4 章 實驗結果討論..........................................58 4-1 ATP檢測 ................................................ 58 4-1-1 使用模擬軟體決定寡核苷酸修飾條件..........................58 4-1-2 使用模擬軟體決定雜合反應條件............................. 90 4-1-3 測試修飾於AuNPs表面的cDNA的數量 ..........................93 4-1-4 AuNPs-cDNA /ATP aptamer-PM複合晶片之靈敏度檢測 ...........99 4-1-5 AuNPs-cDNA /ATP aptamer-PM複合晶片之專一性檢測 .......... 105 4-1-6 拉曼光譜分析............................................ 108 4-1-7 與其他ATP檢測方式比較 ...................................118 4-1-8 檢測微生物體內所含ATP含量 ............................... 120 4-2 白血球檢測 ................................................127 4-3 革蘭氏陽性菌檢測........................................... 130 4-3-1 使用模擬軟體分析..........................................131 4-3-2 實驗結果..................................................136 第 5 章 結論................................................... 139 第 6 章 參考文獻................................................ 141

    Amendola V, Pilot R, Frasconi M, Marago OM, Iati MA. Surface plasmon resonance in gold nanoparticles: A review. Journal of Physics: Condensed Matter. 2017:203002.
    Amodio E, Dino C. Use of atp bioluminescence for assessing the cleanliness of hospital surfaces: A review of the published literature (1990-2012). Journal of Infection and Public Health. 2014.
    Balashov SP. Protonation reactions and their coupling in bacteriorhodopsin. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2000, 1460 (1):75-94.
    Chen H-M, Jheng K-R, Yu A-D. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosensors and Bioelectronics. 2017, 91:24-31.
    Chen H-M, Lin C-J, Jheng K-R, Kosasih A, Chang J-Y. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids and Surfaces B: Biointerfaces. 2014, 116:482-488.
    Chris LA, Mulyawan B, Dharmawan AB. A leukocyte detection system using scale invariant feature transform method. International Journal of Computer Theory and Engineering. 2016.
    Daniel M-C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews. 2004, 104 (1):293-346.
    Fan A, Lau C, Lu J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Analytical Chemistry. 2005, 77 (10):3238-3242.
    Fang H, Yin HJ, Lv MY, Xu HJ, Zhao YM, Zhang X, Wu ZL, Liu L, Tan TW. Approach for determination of atp:Adp molar ratio in mixed solution by surface-enhanced raman scattering. Biosens Bioelectron. 2015:71-76.
    Hampp N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev. 2000, 100 (5):1755-1776.
    Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research. 2010, 1 (1):13-28.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:  Applications in biological imaging and biomedicine. The Journal of Physical Chemistry B. 2006, 110 (14):7238-7248.
    Kawamura I, Ohmine M, Tanabe J, Tuzi S, Saitô H, Naito A. Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state nmr. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2007, 1768 (12):3090-3097.
    Lee J, Park C, Kim Y, Park S. Signal enhancement in atp bioluminescence to detect bacterial pathogens via heat treatment. Biochip Journal. 2017:287-293.
    Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B. 1999, 103 (40):8410-8426.
    Pankratova G, Leech D, Gorton L, Hederstedt L. Extracellular electron transfer by the gram-positive bacterium enterococcus faecalis. Biochemistry. 2018.
    Santangelo MF, Libertino S, Turner APF, Filippini D, Mak WC. Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive atp bioluminescence detection. Biosensors and Bioelectronics 2018, 99:464-470.
    Shi CA, Zhang X, Yin HJ, Fang H, Zhao YM, Liu L, Wu ZL, Xu HJ. A novel atp quantification method combining glucose phosphorylation with surface-enhanced raman scattering. Sensors and Actuators B: Chemical. 2017, 241:855-859.
    Wang J. Vectorially oriented purple membrane: Characterization by photocurrent measurement and polarized-fourier transform infrared spectroscopy. Thin Solid Films. 2000, 379 (1):224-229.
    Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C. A gold nanoparticle-based aptamer target binding readout for atp assay. Advanced Materials. 2007:3943-3946.
    Wang J, Yoo S-K, Song L, El-Sayed MA. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B. 1997, 101.
    Wu Y, Xiao F, Wu Z, Yu R. Novel aptasensor platform based on ratiometric surface-enhanced raman spectroscopy. American Chemical Society. 2017, 89:2852-2858.
    Yaginuma H, Kawai S, Tabata KV, Tomiyama K, Kakizuka A, Komatsuzaki T, Noji H, Imamura H. Diversity in atp concentrations in a single bacterial cell population revealed by quantitative single-cell imaging. SCIENTIFIC REPORTS. 2014:6522.
    Yan SL, Miao SN, Deng SY, Zou MJ, Zhong FS, Huang WB, Pan SY, Wang QZ. Atp bioluminescence rapid detection of total viable count in soy sauce. Luminescence. 2012:34-38.
    Yeh YC, Creran B, Rotello VM. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale. 2012:1871-1880.
    Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory. Analytical biochemistry. 1998, 262 (2):137-156.
    Yguerabide J, Yguerabide EE. Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. Journal of Cellular Biochemistry. 2001, 84 (S37):71-81.
    張智凱, 奈米金於細菌視紫質DNA光電晶片應用之初步探討, 國立台灣科技大學化學工程研究所碩士論文. 2012
    林承德, AFM探討分別以結合氧化石墨烯之親和吸附與共價鍵結作用固定化之紫膜, 國立台灣科技大學化學工程研究所碩士論文. 2012
    廖信銓, 微流體於細菌視紫質光電晶片製備之應用, 國立台灣科技大學化學工程研究所碩士論文. 2015
    鄭存孝, 紫膜生物光電晶片檢測寡核苷酸雨即時監測基因合成之應用, 國立台灣科技大學化學工程研究所碩士論文. 2017
    郭力彬, 紫膜生物光電晶片應用於糖化血紅素 (HbA1c) 檢測之探討, 國立台灣科技大學化學工程研究所碩士論文. 2017
    陳俊原, 紫膜生物光電晶片檢測牙斑菌之特異性與即時檢測牙斑菌生長之探討, 國立台灣科技大學化學工程研究所碩士論文. 2017
    鄭凱如, 新型紫膜複合材料與晶片之光電與光學特性研究暨應用, 國立台灣科技大學化學工程研究所博士論文. 2018

    無法下載圖示 全文公開日期 2023/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE