簡易檢索 / 詳目顯示

研究生: 謝竺君
Chu-Chun Hsieh
論文名稱: Bacteriorhodopsin及其突變蛋白之光電響應
Photoelectric response of bacteriorhodopsin and its mutants
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 何國川
Kuo-Chuan Ho
江志強
Chiang-Jiang Jyh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 114
中文關鍵詞: 細菌視紅紫質嗜鹽菌紫色細胞膜光電流
外文關鍵詞: bacteriorhodopsin, Halobacterium salinarium, purple membrane, photocurrent
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bacteriorhodopsin (bR)為Halobacterium salinarium嗜鹽菌紫色細胞膜(puple membrane,PM)上的獨一光驅動質子泵之光能轉換蛋白。本研究以比色管光電系統證明在開光(light-on)及關光(light-off)情況下,PM溶液分別會有氫離子釋出與吸收的光循環泵機制。

    首先,針對PM溶液連續以光激發30分鐘前後,量測系統中工作槽與相對槽溶液之pH值變化,來推測中間介質銅片上兩面的物理及化學反應。以XPS (X-ray photoelectron spectroscopy、SEM (Scanning electron microscopy)及XRD (X-ray diffraction)分析發現,連續照光讓兩邊銅面上產生氧化還原反應,會於相對槽銅面生成氧化亞銅(Cu2O),後續再利用此被氧化的銅面當工作銅面與PM溶液接觸,便會造成整個系統迴路上光電流強度的大幅增加。

    接著,分別針對原生株(native)和重組突變株(wild-type、G241C、D96N)所產生之PM溶液,其light-on、light-off時所產生光電流的應答作一比較。結果發現連續受光激發後的各PM溶液較未受激發的溶液,其光電流值會增強,並在light-on或light-off的主訊號之後,會尾隨連續出現多個小電流的訊號,且其強度會較新鮮的各PM溶液強。

    最後,藉以改變光入射頻率以及外在環境之pH值,比較native、wild-type、G241C、D96N PM光電流訊號之差別。發現D96N可以在比其餘PM溶液更高的光頻率下,還有光電流應答產生;關於pH值方面,D96N PM會比native和wild-type PM在酸性或鹼性下,更早轉換成藍膜(BRblue)與鹼膜(BRa),而G241C PM次之,native及wild-type PM維持在紫色的pH範圍較廣。


    Bacteriorhodopsin (bR), the only protein in the purple membrane (PM) of Halobacterium salinarium, is a light-driven proton pump. To verify the release and uptake of protons in the light-on and light-off photocycle, respectively, of an illuminated PM solution, a cuvette photoelectric system was set up to trace the photocurrent arising from proton pumping.

    First, the role of the copper-plate medium in the photoelectric system and the reactions taking place on its both sides while the PM solution was continuously illuminated for 30 min were revealed by monitoring the pHs of the solutions facing either side (the working and counter parts). We analyzed by XPS (X-ray photoelectron spectroscopy, SEM (Scanning electron microscopy) and XRD (X-ray diffraction), and suggested that the continuous illumination induced the oxidation of the counter-copper plate. Then we used the counter-copper plate as the working-copper plate to contact with PM solutions. This resulted in the enhancement of the photoelectric signals in the following experiments.

    Secondly, the photoelectric signals, light-on and light-off, of the illuminated solutions of native, wild-type, G241C, and D96N PMs were each detected and compared. The results showed that the photoelectric peak signals arisen from continuously illuminated PM solutions were higher and accompanied by more after-peaks than those from the fresh solutions.

    Finally, we compared the native, wild-type, G241C and D96N PM by change the frequency of excited light and the surrounding pH. We found that D96N PM could still yield photoelectric response at higher frequency. About the pH, D96N PM changed from BR to BRblue and BRa easier than native and wild-type PM and the following was G241C PM. The color of native and wild-type PM maintained as purple at wider pH range.

    中文摘要 Ⅰ 英文摘要…………………………………………………………………………..…Ⅱ 目錄 Ⅳ 表目錄…………………………………………………………………………….............ⅤⅡ 圖目錄……………………………………………………………………………….ⅤⅢ 第一章 緒論 1 第二章 文獻回顧 2 2-1 Holobacterium salinarium………………………………………………. 2 2-2 Bacteriorhodopsin (BR)…………………………………………….………..3 2-2-1 BR之蛋白質結構及其特性………………………………………..3 2-2-2 BR的突變研究……………………………………………………..9 2-2-3 突變BR之建構及生產 10 2-2-4 BR的前驅物(bacterioopsin,BO)………………………………..14 2-3 BR光循環機制及其應用………………………………………………….17 2-3-1 BR之光主循環機制及其應用……………………………………………...17 2-3-2 BR之光循環分支機制及其應用………………………………...19 2-4 BR結構分析—FTIR (Fourier Transform Infrared) 23 2-5 pH值對BR之影響…………………………………………………………25 2-6 BR的不可逆反應………………………………………………….……….27 2-7 BR的光電響應……………………………………………………………..28 2-8 光電池元件…………………………………………………………...……32 第三章 實驗目的 35 第四章 實驗 36 4-1實驗藥品及材料 36 4-2藥品配製 37 4-3實驗設備 39 4-4實驗流程 41 4-5實驗步驟 43 4-5-1菌株培養…………………………………………………………...43 4-5-2紫膜的純化………………………………………………………...44 4-5-3 BR濃度的定量………………………………...………………….45 4-5-4 從H . salinarium抽取色體DNA…………….…………………..45 4-5-5光電流偵測系統的架設…………………………………………...46 4-5-6 FTIR測法………………………………………………………….46 第五章 結果與討論 48 5-1原生株與重組突變株之篩選、培養及PM純化…………………………48 5-2 液態PM之cuvette光電系統……………………………………………56 5-2-1 光電流量測系統電流方向之固定……………………………….56 5-2-2 光電反應槽中工作槽之背景溶液對光電流訊號的影響……….57 5-3 光電反應槽中銅面之前處理…………………………………………….61 5-4 中間銅面介質之成分分析…………………………………………..…...71 5-4-1 X射線光電子能譜儀分析………………………………………71 5-4-2 掃描式電子顯微鏡分析………………………………………...76 5-4-3 X光粉未繞射儀分析……………………………………………79 5-5 激發光源波長的選用…………………………………………………….82 5-6 綠光激發頻率對系統訊號之影響……………………………………….83 5-7 pH對PM影響…………………………………………………………….89 第六章 結論………………………………………………………………………....97 附錄一………………………………………………………………………………..98 附錄二………………………………………………………………………………..99 附錄三………………………………………………………………………………100 附錄四………………………………………………………………………………102 附錄五………………………………………………………………………………106 參考文獻……………………………………………………………………………108

    李晨鳳,”生物光電感測薄膜之初步研究” ,台灣科技大學化學工程技術研究所碩士論文(2000)

    溫文興,”Bacteriorhodopsin突變蛋白之初步研究”,台灣科技大學化學工程技術研究所碩士論文(2005)

    謝謹謙,”Halobacterium halobium紫色細胞膜光電系統的建立”,台灣科技大學化學工程技術研究所碩士論文(2005)

    蘇志溫,”Bacteriorhodopsin生物晶片之光電響應”,台灣科技大學化學工程技術研究所碩士論文(2005)

    梁閔升,”探討於二階段化學氣相沉激銅膜之第一階段所沉積之氧化亞銅膜之還原過程” 台灣科技大學化學工程技術研究所碩士論文(2004)

    許宗雄, “簡介1978年諾貝爾化學獎得主及其工作--化學滲透理論” 科學月刊1979年 1月第109期

    Aroutiounian, V.M., Arakelyan, V.M., and Shahnazaryan, G.E., “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting”, Solar Energy, 78, 581-592 (2005)

    Balashov, S. P., “Protonation reactions and their coupling in bacteriorhodopisn”, Biochem. Biophys. Acta, 1460, 75-94 (2000).

    Birge, R. R. “Protein-based computers” Sci. Amer., 272, 90–95 (1995)

    Bogomoln, R. A.” Light energy conservation processes in Halobacterium halobium cells”, Fed Proc., 36, 1833-1839 (1997)

    Dancsházy Z., Tokaji Z., and Dér A., ”Bleaching of bacteriorhodopsin by continuous light”, FEBS Letters, 450 , 154-157 (1999)

    Edman, K., Nollert, P., Royant, A., Belrhali, H., Pebay-Peyroula, E., Hajdu, J., Neutze, R., and Landau, E. M. ”High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle”, Nature, 401, 822-826 (1999)

    Grzesiek, S. and Dencher, N. A., “Dependency of ΔpH-relaxation across vesicular membranes on the buffering power of bulk solutions and lipids”, J. Biophys., 50, 265-276 (1986)

    Hampp, N. and Oesterhelt, D. “Chapter 11:Bacteriorhodopsin and its potential in technical application” in Niemeyer, C.M. and Mirkin, C. A. eds., Nanobiotechnology, Concepts, Application and Perspectives, 1st ed., Wiley-Vch, New York, 152 (2005)

    Hampp, N. “Bacteriorhodopsin as a photochromic retinal protein for optical memories”, Chem. Rev., 100, 1755-1776 (2000)

    Hartmann, R., Sickinger, H. D., and Oesterhelt, D., “Anaerobic growth of halobacteria”, Proc. Natl. Acad. Sci. USA, 77, 3821-3825 (1980).

    Hong, F. T., “The bacteriorhodopsin model membrane system as a prototype molecular computing element”, Bio. Systems, 19, 223-236 (1986)

    Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K.D., “Standard XPS spectra of the elements” in Chastain, J and King, R. C. eds. ”Handbook of X-ray photoelectron spectroscopy”, 2nd ed., Eden Prairie, Minnesota (1995)

    Kandori, H., ”Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin”, Biochim. Biophy. Acta, 1658, 72– 79 (2004)

    Kono, M., Misra, S., and Ebrey, T. G., “pH dependence of light-induced proton release by bacteriorhodopsin”, FEBS Lett., 331, 31-34 (1993).

    Krebs, M. P., Mollaaghababa, R., and Khorana, H. G., ”Gene replacement in Halobacterium halobium and expression of bacteriorhodopsin mutants”, Biochem., 90, 1987-1991 (1993)

    Lanyi, J. K. and Schobert, B., “Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the Bacteriorhodopsin photocycle”, Biochem. , 43, 3-8 (2004)

    Lehninger, A. L. “Biochemistry”, 2nd Ed., Worth Publishers, New York (1975)

    Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., and Lanyi, J. K., “Structure of bacteriorhodopsin at 1.55 angstrom resolution”, J. Mol. Biol., 291, 899-911 (1999).

    Lu, J., Ming, M., Yang, Y., Wu, J., Li, B., Ding, J., Li, Q., and Qian, S., ” Dynamics of primary events in the photocycle of excited bacteriorhodopsin”, Acta Biochim. Biophy. Sinica, 36,724–728 (2004)

    Maeda, A., Iwasa, T., and Yoshizawa, T. “Isomeric composition of retinal chromophore in dark-adapted bacteriorhodopsin”, J. Biochem. (Tokyo), 82, 1599-1604 (1977)

    Martinez, L. C. and Turner, G. J. “High-throughput screening of bacteriorhodopsin mutants in whole cell pastes”, Biochim. Biophy. Acta, 1564, 91– 98 (2002)

    Miyasaka, T., Koyama, K., and Iton, I., ”Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor”, Science, 255, 342-344 (1992)

    Peck, R. F., Echavarri-Erasun, C., Johnson, E. A., Ng, W. V., Kennedy, S. P., Hood, S., DasSarma S., and Krebs, M. P., “brp and blh are required for systhesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarm”, J. Biol. Chem., 276, 5739-5744 (2001).

    Pettei, M. J., Yudd, A.P., Nakanishi, K., Henselman, R., and Stoeckenius, W. ”Identification of retinal isomers isolated from bacteriorhodopsin”, Biochem., 16, 1955-1959 (1977)

    Roberston, B. and Lukashev, E. P., “Rapid pH change due to bacteriorhodopisn measured with a Tin-oxide electrode”, Biophys., 68, 1507-1517 (1995).

    Saitô, H., Yamaguchi, S., Ogawa, K., Tuzi, S., Márquez, M., Sanz, C., and Padrós, E., “Glutamic acid Residues of bacteriorhodopsin at the extracellular surface as determinants for conformation and dynamics as revealed by site-directed solid-State 13C NMR”, Biophys., 86, 1673–1681 (2004)

    Schäfer, G., Engelhard, M., and Müller, V., “Bioenergetics of the Archaea”, Microbiol. Mol. Biol. Reviews, 63, 570–620 (1999)

    Shand, R. F. and Betlach, M. C., “Expression of the bop gene cluster of Halobacterium halobium is induced by low oxygen tension and by light”, J. Bacteriol., 173, 4692-4699 (1991).

    Steven W. Cline and W. Ford Doolittle, “Efficient transfection of the archaebacterium Halobacterium halobium”, Bacteriol., 169, 1341-1344, 1987.

    Stuart, J. A., Marcy, D. L., Wise, K. J., and Birge, R.R., “Volumetric optical memory based on bacteriorhodopsin”, Synth. Metals, 127, 3–15 (2002)

    Sumper, M., Reitmeier, H., and Oesterhelt, D. ”Biosynthesis of the purple membrane of Halobacteri”, Angew. Chem. Int. Ed. Engl. , 15, 187-194 (1976)

    Szundt, I. and Stoeckenius, “Effect of lipid surface charges on the purple-to-blue transition of bacteriorhodopsin”, Proc. Natl. Acad. Sci. USA, 84, 3681-3684 (1987)

    Terpugov, E. L. and Degtyareva, O. V., ”FTIR Emission spectra of bacteriorhodopsinin a vibrational excited state”, Biochem.(Moscow), 66, 1315-1322 (2001)

    Váró, G. and Lanyi J. K., ”Photoreactions of bacteriorhodopsin at acid pH”, Biophys., 56, 1143-1151 (1989)

    Wang, G., Lu, T., Hu, K.S. and Jiang, L., “Photoresponse discrimination of bacteriorhodopsin films to light stimuli of different frequencies”, Photochem. Photobiol., 52, 86–91 (1999)

    Wang, J. P., Yoo, S. K., Song, L. and El-Sayed, M. “A. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin”, Phys. Chem., 101, 3420-3423 (1997).

    Wang, J., “Photocurrent from Oriented Membrane Films Containing Acid-blue and
    Acid-purple Bacteriorhodopsin and its Mutants”, Photochem. and Photobiol., 71, 476–80 (2000)

    Wise, K. J.,” Optimization of bacteriorhodopsin via mutagenesis”, Doctor of Philosophy dissertation, University of Connecticut (2004)

    Wrighton, M. S., “Photochemistry”, Chem. Eng. News, Special report, 3, 31-47 (1979)

    Yao, B. L., Wang, Y. L., Hu, K. S., Chen, D. L., Zheng, Y. and Lei, M. ”Mechanisms of pulse response and differential response of bacteriorhodopsin and their relations”, Photochem. Photobiol. 76, 545-548 (2002).

    無法下載圖示 全文公開日期 2011/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE