簡易檢索 / 詳目顯示

研究生: 陳人豪
Ren-Hao Chen
論文名稱: 雙繞射共路徑式線性光學尺之開發
Development of a Double-Diffraction Common Path Linear Encoder
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 鄧昭瑞
Geo-Ry Tang
李朱育
Ju-Yi Lee
許正治
Cheng-Chih Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 84
中文關鍵詞: 線性光學尺共路徑雙繞射位移
外文關鍵詞: Linear Encoder, Common Path, Double-Diffraction, Displacement
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以光柵干涉術作為主要的量測基礎,提出了一套新式的微型化雙繞射共路徑式線性光學尺,其系統架構簡單,架設及校正容易,可用以進行精密的大行程位移量測。我們利用自行設計的稜鏡配合反射式光柵建構出「共路徑式光路」,即相干涉的參考及量測光束於系統中均行經相同的光學元件,此兩道光將感受到相同的環境擾動訊息,環境擾動的影響量將於干涉訊號中相互補償抵銷,故能使光學尺具備較高的系統穩定度。而後,我們透過反射鏡使參考及量測繞射光沿原路徑再次入射相同的光柵,形成「雙繞射光路」,可引入加倍的相位變化量,提升系統的靈敏度及解析度。最後再藉由IC光偵測器擷取干涉訊號中的相位變化,用以回推待測光柵的位移變化量。
本研究將雙繞射共路徑式線性光學尺架設於商用微定位平台及長行程電控位移平台上進行多項驗證實驗,並將此套雙繞射共路徑式線性光學尺的量測結果與平台內建感測器所測得的結果相比較,用以驗證此套系統的可行性及量測性能。由實驗結果顯示,此套雙繞射共路徑式線性光學尺可精準量測規則及不規則的位移運動,其位移量測解析度可達10 nm,於總行程100 nm的步階運動中,重複度優於1.1 nm,穩定度於10分鐘內之飄移量優於15 nm,量測速度極限可達4.3 mm/s,驗證此套雙繞射共路徑式線性光學尺可廣泛應用於各式需精密位移量測的場合中,深具發展及應用潛力。


In this study, an innovative miniaturized double-diffraction common path linear encoder is proposed, which is used grating interferometry as the main measurement basis. The architecture of the system is simple and easy to be set up and adjusted. In addition, it has capability of precision long-range measurement. We constructed “common optical path” by using self-designed prism which is combined with the reflective grating. In other words, the corresponding interference reference and measuring beams pass through the same optical elements, which are under the same environment and the influence of the external disturbance will be offset by mutual compensation in the interference signal, so that the linear encoder would have a higher system stability. Then, the reference and measuring diffraction beams are incident to the same grating along the original optical path to form “double-diffraction”, which induce the double phase variation and improve the sensitivity and resolution of the system. Finally, the displacement can be obtained by capturing phase variation of the interference signal received by IC.
The proposed linear encoder is placed on the commercial positioning stage and long-range precision motion stage to conduct several experiments. And the measurement results are compared with the results of built-in capacitive sensor to verify the feasibility and performance of the proposed system. It can be shown from the experimental results that the proposed linear encoder can measure regular and irregular motion precisely, where the resolution can reach 10 nm, the repeatability is better than 1.1 nm within the step motion of 100 nm total range, the stability is better than 15 nm within 10 minutes experiment, and the speed limit can reach 4.3 mm/s, respectively, proving that the proposed double-diffraction common path linear encoder can be widely used in various fields requiring precise displacement measurement, and has great development and application potential.

摘要 I Abstract II 致謝 IV 符號說明 V 目錄 IX 圖目錄 XI 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 影像式線性光學尺之文獻回顧 2 1.2.2 干涉式線性光學尺之文獻回顧 6 1.2.3 雷射光學尺之文獻回顧 10 1.2.4 提升系統靈敏度技術之文獻回顧 12 1.2.5 國內外專利之文獻回顧 15 1.3 研究目的 19 1.4 論文架構 19 第二章 基礎理論 21 2.1 光學干涉術 21 2.2 光柵干涉術 22 2.2.1 都卜勒效應引入相位變化之原理 22 2.2.2 干涉式線性光學尺 23 2.3 斯涅耳定律 24 2.4 雙繞射光路量測技術 26 2.5 共路徑式光路量測技術 28 2.6 干涉訊號相位解調原理 29 2.7 小結 31 第三章 雙繞射共路徑式線性光學尺 33 3.1 共路徑式光路架構之設計原理 33 3.1.1 稜鏡之光學元件特性 33 3.1.2共路徑式光路架構設計 34 3.2 雙繞射共路徑式線性光學尺 35 3.3 相位解調系統 37 3.4 讀頭光機設計 38 3.5 本研究所用到之光學元件及實驗儀器 39 3.6 小結 40 第四章 實驗結果與討論 41 4.1 位移(x)量測實驗 41 4.2 光學尺系統容忍度試驗 44 4.2.1 角度偏差容忍度 45 4.2.2 間距(Gap)偏差容忍度 50 4.3 量測系統性能測試與討論 51 4.3.1 隨機波實驗 51 4.3.2 解析度量測 52 4.3.3 重複度量測 53 4.3.4 穩定度量測 54 4.3.5 量測速度極限 55 4.4 小結 57 第五章 誤差分析 58 5.1 系統誤差 58 5.1.1 讀頭與光柵對位誤差於位移量測系統中造成之影響 59 5.1.2讀頭與光柵之間距(Gap)誤差於位移量測系統造成之影響 60 5.1.3 稜鏡角度製造公差 60 5.2 隨機誤差 62 5.2.1 環境振動 62 5.2.2材料熱膨脹係數造成的影響 62 5.3 小結 63 第六章 結論與未來展望 64 6.1 結論 64 6.2 未來展望 65 參考文獻 66

[1] N. Nishioki and T. Itabashi, "Grating-intereference type displacement meter apparatus," U.S. Patent No. 5035507A, (1991).
[2] S. Ichikawa, H. Oka, N. Terao, and S. Sakagamii, "Diffraction-type optical encoder with improved detection signal insensitivity to optical grating gap variations," U.S. Patent No. 4943716A, (1990).
[3] D. Michel and E. Spanner, "Position measuring apparatus with reflection," U.S. Patent No. 5079418A, (1992).
[4] W. Holzapfel and E. Spanner, "Grating-intereference type displacement meter apparatus," U.S. Patent No. 977539A, (1999).
[5] H. Tamiya, "Optical instrument and measurement for measuring displacement of scale using different order diffraction of a diffraction grating," U.S. Patent No. 5499096A, (1996).
[6] J. H. Song, K. C. Kim, and S. H. Kim, "Reducing tilt errors in moiré linear encoders using phase-modulated grating," Review of scientific instruments, 71(6), 2296-2300 (2000).
[7] C. F. Kao and M.-H. Lu, "Optical encoder based on the fractional Talbot effect," Optics Communications, 250(1-3), 16-23 (2005).
[8] G. Ye, H. Liu, Y. Ban, Y. Shi, L. Yin, and B. Lu, "Development of a reflective optical encoder with submicron accuracy," Optics Communications, 411, 126-132 (2018).
[9] Y. G. Lee, H. S. Lee, and S. S. Lee, "Miniature Reflection-Type Optical Displacement Sensor Incorporating a Projected Beam," IEEE Photonics Journal, 7(1), 1-9 (2015).
[10] M. Dobosz, "High-resolution laser linear encoder with numerical error compensation," Optical Engineering, 38(6) (1999).
[11] C. C. Wu, W. J. Wu, Z. S. Pan, and C.-K. Lee, "Laser linear encoder with both high fabrication and head-to-scale tolerances," Applied Optics., 46(16), 3169-3176 (2007).
[12] A. Kimura, W. Gao, Y. Arai, and Z. Lijiang, "Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness," Precision Engineering, 34(1), 145-155 (2010).
[13] C. C. Wu, C. H. Liao, Y. Z. Chen, and J. S. Yang, "Common-path laser encoder with Littrow configuration," Sensors and Actuators A: Physical, 193, 69-78 (2013).
[14] M. Nevière, E. Popov, B. Bojhkov, L. Tsonev, and S. Tonchev, "High-accuracy translation–rotation encoder with two gratings in a Littrow mount," Applied Optics, 38(1), 67-76 (1999).
[15] C. F. Kao, S. H. Lu, H. M. Shen, and K. C. Fan, "Diffractive Laser Encoder with a Grating in Littrow Configuration," Japanese Journal of Applied Physics, 47(3), 1833-1837 (2008).
[16] F. Cheng and K. C. Fan, "Linear diffraction grating interferometer with high alignment tolerance and high accuracy," Applied Optics, 50(22), 4550-4556 (2011).
[17] V. C. Pretheesh Kumar, C. Joenathan, A. Ganesan, and U. Somasundram, "Increasing the sensitivity for tilt measurement using a cyclic interferometer with multiple reflections," Optical Engineering, 55(8) (2016).
[18] C. C. Wu, C. K. Lee, S. S. Lu, W. J. Chen, C. S. Yang, and C. T. Hsieh, "Diffractive laser optical encoder with high tolerance to high‐speed mechanical runout," Journal of the Chinese Institute of Engineers, 24(4), 419-429 (2011).
[19] C. C. Chang, "Double-diffraction planar encoder by conjugate optics," Optical Engineering, 44(2) (2005).
[20] Y. Sheng et al., "Research on a grating interferometer with high optical subdivision based on quasi-Littrow configuration," presented at the Holography, Diffractive Optics, and Applications VII, (2016).
[21] K. Ishizuka, T. Nishimura, and O. Kasahara, "Rotary encoder using reflected light," U.S. Patent No.5036192A, (1991).
[22] K. Ishizuka, "Optical encoder," U.S. Patent No.6999179B2, (2006).
[23] A. Spies and A. Teimel, "Position measuring apparatus utilizing two-beam interferences to create phase displaced signals," U.S. Patent No. 5120132A, (1992).
[24] W. Y. Jywe, C. H. Liu, and L. T. Li, "A 3D measuring system using diffraction grating interferometry technique," TW Patent No. 588152B, (2004).
[25] W. Y. Jywe, C. H. Liu, and L. T. Li, "System capable of measuring five degrees of freedom signals," TW Patent No. 591199B, (2004).
[26] H. Eugene, Optics 4th, United States of America: Addison Wesley, 106–111, ISBN 0-8053-8566-5
[27] L. L. Deck, P. J. de Groot, and M. Schroeder, "Interferometric encoder systems," U.S. Patent No. 8300233B2, (2012).
[28] 詹翔安,「四自由度共路徑式線性光學尺之開發」,碩士論文,國立台灣科技大學,台北,台灣,2019年7月。
[29] C. C. Wu, J. S. Yang, C. Y. Cheng, and Y. Z. Chen, "Common-path laser encoder," Sensors and Actuators A: Physical, 189, 86-92 (2013).

無法下載圖示 全文公開日期 2025/08/28 (校內網路)
全文公開日期 2025/08/28 (校外網路)
全文公開日期 2025/08/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE