簡易檢索 / 詳目顯示

研究生: 周家德
Jia-De Zhou
論文名稱: 工業機器人之無奇異點工作空間
Singularity-Free Workspaces of Industrial Manipulators
指導教授: 蔡高岳
Kao-Yueh Tsai
口試委員: 石伊蓓
Yi-Pei Shih
王勵群
L.T. Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 工業機器人無奇異點工作空間操控性軸位移限制虛擬奇異曲線
外文關鍵詞: Industrial Manipulators, Singularity-Free, Workspaces, Dexterity, Joint limits, Pseudo singular curves
相關次數: 點閱:234下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 串聯式機器人之工作空間已被研究數十年之久且目前已有很多方法可決定各種不同型式之工作空間。本文之研究集中於一個較少被探討之主題:考慮軸位移限制之無奇異點工作空間。
    本文首先提出可迅速求得後三軸交於一點及任兩軸交於一點兩類機器人賈式矩陣行列式值之方法,其次利用行列式值繪出奇異曲線及虛擬奇異曲線。這些曲線將用來研究(i)軸位移空間及工作空間之對應關係;(ii)決定哪一組反位移解具有最大之工作空間;(iii)探討軸位移限制對於工作空間之影響。最後提出數個方法求得一機器人以軸位移限制及奇異點為邊界之所有無奇異點工作空間。在過程中可同時衡量每一空間之操控性及機械效率以選擇符合需求之最佳工作空間。


    The workspace of a serial manipulator has been thoroughly studied for decades and various approaches have been proposed to determine different types of workspaces. This work focuses on a special type of workspace that is rarely investigated: singularity-free workspaces considering the effect of joint limits.
    Efficient methods are first proposed to develop the determinant of the Jacobian matrix for two types of industrial manipulators: the manipulators with the last three axes intersected at one point and the manipulators with two axes intersected at one point. The determinant is then employed to develop singular curves and pseudo singular curves. These curves are used to (i) study the mapping between the joint space and the workspace; (ii) determine which branch of inverse kinematic solutions has maximum workspace and (iii) investigate the effect of joint limits on the size of the workspace. Different methods that develop subspaces with joint limits and singular curves as their boundaries are presented to obtain all the singularity-free workspaces of a manipulator. The dexterity and mechanical efficiency related to any singularity-free workspace can also be evaluated in the process in order to choose the desired workspace for applications.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 V 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本文架構 3 第二章 理論基礎 4 2.1 連桿參數及D-H齊次轉換矩陣 4 2.2 賈氏矩陣 6 2.3 螺旋轉換矩陣 7 2.4 後三軸交於一點之機械手臂反位移分析 8 2.5 操控性指數 10 2.6 靜力分析 10 第三章 後三軸交於一點之手臂工作空間 12 3.1 賈氏矩陣及奇異點分析 12 3.2 奇異點與虛擬奇異點 16 3.3 反位移解與虛擬曲線 17 3.4 軸位移空間及工作空間之對應關係 23 3.5 軸位移限制 26 3.6 操控性及機械效率 40 3.7 小結 44 第四章 偏位型機器人之工作空間 46 4.1 兩軸交於一點賈氏矩陣之行列式值 46 4.2 工作空間 52 4.3 軸位移限制 56 4.4 範例 60 4.5 小結 64 第五章 結論與未來展望 65 附件一 第四軸及第五軸交於一點之行列式值 67 參考文獻 71

    [1] Davison, J. K., and Pingali, P., “Robot Workspace of a Tool-Plane: Part 2. Computer Generation and Selected Design Conditions for Dexterity,,” ASME J. of Mechanisms, Transmissions and Automation in Design, 109(1), pp. 61-71, 1987.

    [2] Freudenstein, F., and Primrose, E.J.F., “On Analysis and Synthesis of the Workspace of a Three-Link, Turning-Pair Connected Rrbot Arm,” ASME J. of Mechanisms, Transmissions and Automation in Design, 106(3), pp. 365-370, 1984.

    [3] Gupta, K.C., and Roth, B., “Design Considerations for Manipulator Workspace,” Asme J. of Mechanical Design, 104(4), pp. 704-712, 1982.

    [4] Gupta, K.C., “ON the Nature of Workspace,” The International J. of Pobotics Research, 5(2), pp. 112-121, 1986.

    [5] Hsu, M.S., and Kohli, D., “The Jacobian Analysis of Mechanical Manipulators,” Mechanism and Machine Theory, 22(3), pp. 265-275, 1987.

    [6] Hsu, M.S., and Kohli, D., “Boundary surfaces and Accessibility Regions for Regional Structures of Manipulators,” Mechanism and Machine Theory, 22(3), pp. 276-290, 1987.

    [7] Kohli, D., and Spanos, J., “Workspace Analysis of Mechanical Manip-ulators Using Polynomial Discriminant,” ASME J. of Mechani-sms, Transmissions and Automation in Design, Vol. 107, pp. 209-215, June, 1985.

    [8] Kumar, A., and Waldron, K.J., “The Workspace of a Mechanical Man-ipulator,” ASME J. of Mechanical Design, Vol. 103, pp. 665-672, 1981.

    [9] Kumar, A., and Waldron, K.J., “The Dexterous Workspace,” ASME Paper, No. 80-DET-108, 1981.

    [10] Lee, T. W., and Yang, D.C.H., “On the Evaluation of Manipulator Workspace,” ASME J. of Mechanisms, Transmissions and Automation in Design, 105(1), pp. 70-78, March, 1983.
    [11] Lin, C.C.D., and Freudenstein, F., “Optimization of the Workspace of a Three-Link Turuing-Pair Connected Rrbot Arm,” The International J. of Pobotics Research, Vol. 2, pp. 104-111, 1986.

    [12] Rastegar, J., “Workspace Analysis of 4R Manipulators with Various Degrees of Dexterity,” ASME J. of Mechanisms, Transmissions and Automation in Design, Vol. 110, pp. 42-47, 1987.

    [13] Spanos, J., Kohli, D., “Workspace Analysis of Regional Structures of Manipulators,” ASME J. of Mechanisms, Transmissions and Automa-tion in Design, Vol. 107, pp. 216-225, June, 1985.

    [14] Tsai, Y.C., and Soni, A.H., “Accessible Region and Synthesis of Robot Arm,” Asme J. of Mechanical Design, 103(4), pp. 803-811, Oct., 1981.

    [15] Tsai, Y.C., and Soni, A.H., “An Algorithm for the Workspace of a General N-R Robot,” ASME J. of Mechanisms, Transmissions and Automation in Design, 105(1), pp. 52-58, March, 1983.

    [16] Waldron, K.J., Wnag, S.L., and Bolin, S.J., “A Study of the Jacobian Matrix Serial Manipulators,” ASME J. of Mechanisms, Transmissions and Automation in Design, Vol. 107, pp. 230-237, June, 1985.

    [17] Yang, D.C.H., and Lee, T.W., “On the Workspace of Mechanical Man-ipulators,” ASME J. of Mechanisms, Transmissions and Automation in Design, 105(1), pp. 62-70, March, 1983.

    [18] Rastegar, J., and Deravi, P. “Method to Determine Workspace, Its Subspaces with Different Number of Configurations, and All the Possible Configurations of Manipulator,” Mechanism and Machine Theory, Vol. 22, pp. 343-350, 1987.

    [19] Rastegar, J., and Deravi, P. “The Effect of Joint Motion Limitations on the Workspace, Its Subspaces, and Number of Configurations of Manipulators,” Mechanism and Machine Theory, Vol. 22, pp. 401-409, 1987.

    [20] Ksai K.Y., Hsu, I.P., and Kohli, D., “Admissible Motions of Special Manipulators,” IEEE Transactions on Robotics and Automation, 10(3), pp. 386-391, 1994.

    [21] Burdick, J. W., “A Recursive Method for Finding Revolute-Jointed Manipulator Singularities,” ASME J. of Mechanisms Design, 117(1), pp. 55-63, March, 1995.

    [22] 歐陽妏青,「工業機器人之奇異點分析」,國立台灣科技大學機械工程研究所,2011年7月碩士論文。

    [23] Ksai K.Y., Cheng, J.C., and Kohli, D., “Assemblability, Circuits, Branches, Locking Positions, and Rotatability of Input Links of Mech-anisms With Four Closures” ASME J. of Mechanisms Design, 116(1), pp. 92-98, March, 1994.

    [24] Tsai, K. Y., Kohli, D., and Arnold, J., “Trajectory Planning in Joint Space for Mechanical Manipulators,” ASME J. of Mechanisms Design, 115(4), pp. 909-914, June, 1993.

    QR CODE