簡易檢索 / 詳目顯示

研究生: 宋家瑋
Chia-Wei Sung
論文名稱: 光放大器於使用寬頻譜光源的分波多工被動光網路架構應用
Applications of Optical Amplifiers in 10-Gb/s WDM-PON Systems with Spectrum Sliced Broad Band Light Sources
指導教授: 李三良
San-Liang Lee
恒勇智
Yong-Chie Heng
口試委員: 曹恆偉
Hen-Wai Tsao
吳靜雄
Jing-Shown Wu
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 65
中文關鍵詞: 分波多工被動光網路光放大器寬頻譜光源雜訊抑制遠端泵激頻譜分割
外文關鍵詞: WDM-PON, SOAs, RP-EDFA, ASE, noise suppression, spectrum slicing
相關次數: 點閱:232下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個基於寬頻譜光源頻譜分割技術並利用光放大器來抑制雜訊以及遠端泵激放大的分波多工被動光網路架構。其優點為建置成本低且易於實現。使用循環式的陣列波導光柵將自發放射光源做頻譜分割,分割後的光源透過半導體光放大器抑制雜訊,並利用摻鉺光纖放大器來補償經過各元件及傳輸的損耗。
    藉由交互作種的概念,抑制後的訊號可有效地利用,同時提供上下行的傳輸光源,最多可提供64個通道。透過電致吸收調變器載上訊號,並雙向傳輸25公里。為了降低色散對系統的影響,使用大有效面積光纖傳輸。將系統架構細分為三個子架構,探討不同雜訊抑制程度對應的傳輸效能並得到最佳化的系統配置。實驗上利用雜訊抑制的自發放射光源可實現雙向傳輸10 Gb/s的資料速率,大部分通道傳輸效能可達前向錯誤更正的標準。


    We have proposed and experimentally demonstrated a remotely pumped wavelength-division-multiplexed passive optical network (WDM-PON) with spectrum-sliced ASE light source which can be a low-cost and realizable configuration. The remotely pumped erbium-doped fiber amplifier (RP-EDFA) can compensate the propagation loss and spectrum slicing loss. The ASE light source is sliced in the frequency domain using cyclic arrayed waveguide gratings (AWGs); and its noise is suppressed by using a gain-saturated cascaded semiconductor optical amplifier (SOA).
    The noise suppressed signal can provide downstream and upstream transmission by using the cross seeding concept. With this approach, it is likely to support up to 64 channels. An electro-absorption modulator (EAM) is used as the encoder for each downstream and upstream channel. In order to reduce the dispersion effect, we use a 25 km larger effective area fiber (LEAF) for transmission. The experimental results show that symmetric bidirectional 10 Gb/s transmission can be realized with the proposed scheme. All the downstream channels and the upstream shorter-wavelength channels can achieve satisfactory performance by using the forward error correction.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 導論 1 1.1 前言 1 1.2 被動光網路簡介 1 1.2.1 分波多工被動光網路 3 1.2.2 分波多工被動光網路架構探討 4 1.3 文獻探討 5 1.3.1 寬頻譜光源頻譜分割技術 5 1.3.2 寬頻譜光源頻譜分割技術傳輸系統的演進 6 1.4 研究動機 8 1.5 論文架構 9 第二章 系統架構設計 10 2.1 頻譜分割技術傳輸10 Gb/s之回顧 10 2.2 寬頻譜光源頻譜分割技術傳輸的限制 10 2.2.1 訊號雜訊比的影響 10 2.2.2 色散的影響 12 2.3 系統架構 14 2.4 系統的功率需求分析 16 2.4.1 功率對雜訊抑制的分析 17 2.4.2 光放大器於上下行傳輸的功率分析 17 第三章 半導體光放大器雜訊抑制原理 18 3.1 半導體光放大器工作原理 18 3.2 半導體光放大器雜訊抑制的原理 20 3.3 濾波元件對雜訊抑制的影響 22 第四章 系統量測結果與分析 24 4.1 半導體光放大器EIN抑制 24 4.1.1 線寬對RIN抑制的影響 24 4.1.2 功率對RIN抑制的影響 24 4.1.3 波長對SOA抑制效果的影響 25 4.1.4 濾波器對RIN的影響 27 4.2 系統功率預算 28 4.2.1 下行功率損耗 29 4.2.2 上行功率損耗 30 4.3 傳輸系統誤碼率量測 31 4.3.1 下行10 Gb/s傳輸量測結果 31 4.3.2 上行10 Gb/s傳輸量測結果 39 4.3.3 實驗結果分析 45 第五章 結論 46 5.1 研究成果討論 46 5.2 未來研究方向 47 參考文獻 48

    [1] P. Vetter, "Next Generation Optical Access Technologies," European Conference and Exhibition on Optical Communication, Amsterdam, Netherlands, p. Tu.3.G.1, 2012.
    [2] J. C. Palais, Fiber Optic Communications: Pearson/Prentice Hall, 2005.
    [3] 張勝雄,楊慶忠,光解多工器濾波技術之介紹,遠東學報第二十卷第三期民國九十二年六月。
    [4] M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, "LED spectral slicing for single-mode local loop applications," Electronics Letters, vol. 24, pp. 389-390, 1988.
    [5] T. E. Chapuran, S. Wagner, R. C. Menendez, H. E. Tohme, and L. A. Wang, "Broadband multichannel WDM transmission with superluminescent diodes and LEDs," Global Telecommunications Conference, Phoenix, Arizona , USA, vol.1, pp. 612-618, 1991.
    [6] L. Sang Hyeun, C. Seung Hyun, L. Jie Hyun, J. Eui Suk, Y. Jea Hoon, K. Byoung whi, L. Sang Soo, L. Sang Hyeun, K. Jai Sang, S. Back Heung, K. Suk Jin, K. Jin Hee, J. Ki Tae, "First commercial service of a colorless Gigabit WDM/TDM hybrid PON system," Optical Fiber Communication, San Diego, California, USA, pp. 1-3, 2009.
    [7] J. H. Yu, N. Kim, and B. W. Kim, "Remodulation schemes with reflective SOA for colorless DWDM PON," Journal of Optical Networking, vol. 6, pp. 1041-1054, 2007.
    [8] S. Kobayashi, J. Yamada, S. Machida, and T. Kimura, "Single-mode operation of 500 Mbit/s modulated AlGaAs semiconductor laser by injection locking," Electronics Letters, vol. 16, pp. 746-748, 1980.
    [9] K. Hyun Deok, K. Seung Goo, and L. Chang Hee, "A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser," IEEE, Photonics Technology Letters, vol. 12, pp. 1067-1069, 2000.
    [10] K. Chul Han, L. Ju Han, J. Dae Kwang, H. Young Geun, and L. Sang Bae, "Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated, spectrum-sliced ASE source for 1.25 Gb/s WDM-PON," Optical Fiber Communication and the National Fiber Optic Engineers Conference, Anaheim, California, USA, pp. 1-3, 2007.
    [11] 朱肇易,利用自發性放射光源之雙向傳輸遠端泵激分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2013。
    [12] 林昶佑,基於自發放射光源與遠端泵浦光放大的分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2012。
    [13] 李易倫,利用半導體光放大器抑制寬頻譜光源雜訊之10 Gb/s對稱傳輸遠端泵激分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2014。
    [14] L. Ju Han, K. Chul Han, H. Young Geun, and L. Sang Bae, "WDM-Based Passive Optical Network Upstream Transmission at 1.25 Gb/s Using Fabry Perot Laser Diodes Injected With Spectrum-Sliced, Depolarized, Continuous-Wave Supercontinuum Source," IEEE, Photonics Technology Letters, vol. 18, pp. 2108-2110, 2006.
    [15] L. Han Hyub, C. Seung Hyun, and L. Sang Soo, "Efficient Excess Intensity Noise Suppression of 100-GHz Spectrum-Sliced WDM-PON With a Narrow-Bandwidth Seed Light Source," IEEE, Photonics Technology Letters, vol. 22, pp. 1542-1544, 2010.
    [16] K. Joon Young, Y. Sang Hwa, M. Sang Rok, K. Dong Churl, and L. Chang Hee, "400 Gb/s ASE injection seeded WDM-PON based on SOA-REAM," in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, California, USA, pp. 1-3, 2013.
    [17] A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems," Journal of Lightwave Technology, vol. 23, pp. 2399-2409, 2005.
    [18] J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE, Photonics Technology Letters, vol. 5, pp. 1458-1461, 1993.
    [19] 原榮,鄔文杰,陳積德,宋馭民,劉正瑜,光纖通訊系統-原理與應用,新文京開發出版股份有限公司,民國93年。
    [20] L. Shu Chuan, L. San Liang, L. Han Hyuan, G. Keiser, and R. J. Ram, "Cross-Seeding Schemes for WDM-Based Next-Generation Optical Access Networks," Journal of Lightwave Technology, vol. 29, pp. 3727-3736, 2011.
    [21] G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," Quantum Electronics, vol. 25, pp. 2297-2306, 1989.
    [22] K. Sato and H. Toba, "Reduction of mode partition noise by using semiconductor optical amplifiers," Semiconductor Laser Conference, Monterey, California, USA, pp. 73-74, 2000.
    [23] M. Shtaif and G. Eisenstein, "Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit," Quantum Electronics, vol. 32, pp. 1801-1809, 1996.
    [24] K. Hoon, K. Sangho, H. Seongtaek, and O. Yunje, "Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers," Journal of Lightwave Technology, vol. 24, pp. 775-785, 2006.
    [25] K. Seki, K. Mikami, A. Katayama, S. Suzuki, N. Shinohara, and M. Nakabayashi, "Single-chip FEC codec using a concatenated BCH code for 10 Gb/s long-haul optical transmission systems," Custom Integrated Circuits Conference, San Jose, California, USA, pp. 279-282, 2003.
    [26] A. Tychopoulos, O. Koufopavlou, and I. Tomkos, "FEC in optical communications - A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications," IEEE, Circuits and Devices Magazine, vol. 22, pp. 79-86, 2006.

    QR CODE