簡易檢索 / 詳目顯示

研究生: 謝曜聲
Yao-Sheng Hsieh
論文名稱: 應用於智慧型建築之分波多工被動光網路架構設計之研究
WDM-PON Architectures Designs for Intelligent Building
指導教授: 廖顯奎
Shien-Kuei Liaw
凱紀德
Gerd Keiser
口試委員: 黃振發
none
呂海涵
none
柯錦山
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 77
中文關鍵詞: 智慧型建築分波多工被動光網路混合放大器
外文關鍵詞: WDM PON, intelligent building, amplifier
相關次數: 點閱:305下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於可應用於智慧型建築內之分波多工被動網路架構設計之研究。內文分為兩個部分: 第一部分提出一種可應用於智慧型建築之光被動網路架構之設計。配合現有建築的外部形狀,提出一種由雙中央處理局及雙主骨幹傳輸線,配合簡單的光被動元件如光開關、光功率耦合器及分波多工器等所構成的網路架構。不同於普通的光被動分波網路,論文中所設計的架構能提供包括主骨幹切換及單一樓層切換的完整線路保護功能,使整體傳輸網路的線路存活率大大的提升。此架構能達到10Gb/s 的資料傳輸速率並擁有5dB以上的功率預算,並能對各種不可預期之外力災難擁有高免疫力。建築物能獲得多種對外聯絡的主備援通訊方式。各個使用者度擁有最大的個人資料隱私保護能力,使用者將不再受到隱私外洩的威脅。如此的設計給予了管理者充足的彈性動態頻寬管理能力與使用者數量擴充能力,能在避免重新佈線的情況之下,依使用者數量及需求的流動與變化完成可重構性的服務變更。三級的階層式使用者分級能讓系統可以結合包含分時多工技術在內的各種不同接取技術,大大的擴充使用者容量。其最大之使用者容量為[第一層使用者數目+(光源波道數-第一層使用者數目)×預計分配給第二層使用者之光源數百分比×(分時多工系統最大使用者數目)+(第三層使用者數目)]。
    第二部分簡單介紹了可用於光接取網路之混合式全光放大器。結合低摻雜濃度之摻鉺光纖放大器與拉曼放大器,能初步的達到功率等化的目的,最大的增益差距僅有5.5dB。而殘餘功率的分享則可以有效的提高放大器的功率增益約1dB並降低摻鉺光纖放大器之噪音指數約1dB,拉曼放大器約0.4dB。文中並設計了分散式的色散補償機制。除了4041公尺的色散補償光纖外,我們僅需要再多鋪設每個波長所需要的額外長度,能省下大量的色散補償光纖並精確的完成色散補償,讓放大器功能更加完備。


    This thesis focuses on the wavelength division multiplex (WDM) passive optical network (PON) architecture designs applied in intelligent building. This thesis is divided into two parts; the first part is to design a novel WDM PON architecture that can be employed in intelligent building. To match the outside shape of traditional buildings, we report and demonstrate a simple network architecture that is consists of double central offices (COs) and backbones. All the optical passive components we used are only simple optical passive components such as switches, power couplers, and WDM multiplexers. In contrast to a classical WDM PON, the proposed architecture has a complete in-line protection switching ability including backbones of whole network and distributed line lines for single floors. A high service survival rate is observed.
    The proposed architecture can approach 10Gb/s data rate with power margin over 5dB. It also can provide the network immunity to each unexpected calamities and provide various backup methods for outside communication. The users will not face the threat to compromise of private information and the network administrator can proved a user reconfigurable service.
    The three-tier hierarchical service levels may combine with various access technologies including the time division multiplex (TDM) technology and can enlarge the user capacity. The maximum user capacity is [(The user amount of first level) + (laser channels - The user amount of first level) × (The percentage to the user amount of second level) × (The maximum user capacity of TDM system) + (The user amount of the third level)].
    The second part discusses the hybrid erbium doped fiber amplifier (EDFA)/Raman fiber amplifier (RFA) we can employ in an access network. With low concentration EDF, the gain can be flattened basically. The maximum gain difference is about 5.5dB only. By sharing the residual pumping power, the noise figure (NF) will also be reduced. The gain improvements are 1dB to EDFA and RFA. The NF improvements are 1dB to EDFA and 0.4dB to RFA. We also introduced a distributed dispersion compensation mechanism. When a common 4041-m dispersion compensation fiber had been set up, only the difference in length between 4041m and other individual DCF lengths for different wavelengths should be set up additionally.

    Table of Contents 摘要 I Abstract II Table of Contents IV List of Figures VI List of Tables X Chapter 1: Introduction 1 1-1 Overview 1 1-2 Motivation 3 1-3 Organization of thesis 3 Chapter 2 Fundamental introduction of WDM technologies 4 2-1 Basics 4 2-2 Key characteristics of fiber communication 4 2-3 WDM technology 6 2-4 WDM multiplexer 9 2-5 WDM PON 12 Chapter 3 The proposed WDM PON architecture in intelligent building 18 3-1 The definition of intelligent building 18 3-2 WDM PON service for intelligent building 19 3-3 Network topologies 20 3-4 Proposed WDM PON architecture for IB 23 3-5 Comparison between typical and proposed architectures 29 3-6 Summary 30 Chapter 4 Demonstration and estimation 32 4-1 Hierarchical service level 32 4-2 Physical layers 34 4-3 Simulation results 36 4-4 Network efficiency estimation 49 4-5 Summary 51 Chapter 5 Hybrid amplifier 52 5-1 The erbium-doped fiber amplifier and Raman fiber amplifier 52 5-2 Uni-direction C+L band hybrid amplifier 53 5-3 Bi-direction C+L band hybrid amplifier 60 5-3 Summary 61 Chapter 6 Conclusions and future works 63 6-1 Conclusions 63 6-2 Future Works 64 References 65

    [1] C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave. Technol., vol. 24, no. 12, pp.4568-4583, Dec. 2006.
    [2] 楊淳良、趙亮琳, “光纖通信網路,” 五南出版社, 2007
    [3] Bates, J. Regis,“Optical Switching and Networking Handbook,” McGraw-Hill Companies, New York 2001
    [4] T. H. Maiman, "Stimulated Optical Radiation in Ruby". Nature, 187, 1960
    [5] G. A. Hockham and K. C. Kao, “Dielectric-fibre surface waveguides for optical frequencies”, Institution of Electrical Eng. Proc., vol. 113, pp. 1151-1158. July 1966.
    [6] G. E. Keiser, “Optical Fiber Communications,” 4th ed., Tata McGraw-Hill Publishing Companies, New Delhi, Indian, 2008
    [7] 董德國、陳萬清 譯, “光纖通訊,” 東華書局, 2001
    [8] (Web) http://electron9.phys.utk.edu/optics507/modules/m5/single.html
    [9] E. Delange, “Wideband optical communication systems, Part 11-Frequency division multiplexing,” Proc. IEEE, vol. 58, pp. 1683, Oct. 1970
    [10] W. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt., vol.18, no. 8, pp 2180-2194, Aug. 1977.
    [11] H. Ishio and T. Miki, “A preliminary experiment on wavelength division multiplexing transmission using LED,” in Proc. IOOC’77, vol. C7-3 (Tokyo, Japan), July 1977.
    [12] K. Nosu and H. Ishio, “A design of optical multi/demultiplexers for optical wavelength-division multiplexing transmission,” Trans. IECE, vol. 62-B, pp. 1030-1036, Nov. 1979.
    [13] G. E. Keiser, “A review of WDM technology and applications,” Optical Fiber Technol., vol. 5, no 1, pp. 3-39. Jan. 1999.
    [14] G. E. Keiser, “FTTX concepts and applications,” John Wiley & Sons, Inc., New Jersey, US, 2006.
    [15] Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. of Optical Networking, vol. 4, no. 11, pp. 737-758, Nov. 2005.
    [16] 陳鴻仁, “DWDM 濾波長多工器技術概述,” Optolink ,vol. 30, Nov. 2000.
    [17] (Web)http://www.asia-optical.com.tw/product/product_index_3.html?page=Photonics&serial=124&show_hide_cub=124
    [18] K. Iizuka, “Elements of Photonics,” vol. 2, John Wiley & Sons, Inc., New Jersey, US, 2002.
    [19] K. Lee, S. B. Kang, D. S. Lim, H. K. Lee, and W. V. Sorin, “Fiber link loss monitoring scheme in bidirectional WDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett., vol. 18, no. 3, pp.523-525, Feb. 2006
    [20] 林益增, “建構於分波多工被動光網路之光路監控之研究”, 國立台灣科技大學碩士論文, 2007
    [21] Y. K. Lin and D. R. Spears, “Passive optical subscriber loops with multi-access,” J. Lightwave Technol., vol. 7, no. 11, pp. 1769-1777, 1989.
    [22] M. Zirngibl, C. H. Joyner, L.W. Stulz, C. Dragone, H. M. Presby, and I. P. Kaminow, “LARNET, a local access router network,” IEEE Photon. Technol. Lett. vol.7, no. 2, pp. 215–217, Feb. 1995.
    [23] N. J. Frigo, P. D. Magill, T. E. Darcie, P. P. Iannone, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, and H. M. Presby, “RITENet: a passive optical network architecture based on the remote interrogation of terminal equipment,” http://ieeexplore.ieee.org, 1994
    [24] G. Talli and P. D. Townsend, “Feasibility demonstration of 100 km reach DWDM super PON with upstream bit rates of 2.5 Gb/s and 10 Gb/s,” presented at the Optical Fiber Communication, Conference, Anaheim, California, US, pp. 6-11, Mar. 2005.
    [25] G. Mayer, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM PON access networks,” J. Lightwave Technol. Vol. 18, no. 2, pp. 121–142, Feb. 2002.
    [26] F. An, K. S. Kim, D. Gutierrez, S. Yam, E. Hu, K. Shrikhande, and L. G. Kazovski, “SUCCESS: a next-generation hybrid WDM/TDM optical access network architecture,” J. Lightwave Technol. vol. 22, no. 11, pp. 2557–2569, Nov. 2004.
    [27] J.K.W. Wong, H. Li and S.W. Wang, “Intelligent building research: a review,” Automation in Construction, vol. 14 no. 1, pp.143–159, Jan. 2005.
    [28] M. Wigginton and J. Harris, “Intelligent Skin,” Architectural Press, Oxford, UK, 2002
    [29] W.M. Kroner, “An intelligent and responsive architecture,” Automation in Construction, vol. 6, no. 5, pp.381–393, Sep. 1997.
    [30] T.D.J. Clements-Croome, “What do we mean by intelligent buildings?,” Automation in Construction, vol. 6 no. 5, pp.395–400, Sep. 1997.
    [31] J. Yang and H. Peng, “Decision support to the application of intelligent building technologies,” Renewable Energy, vol.22, no. 1-3, pp. 66-67, Jan. 2001.
    [32] A.T.P. So, A.C.W. Wong and K.C. Wong, “A new definition of intelligent buildings for Asia: The Intelligent Building Index Manual, 2nd ed., Asian Institute of Intelligent Buildings, Hong Kong, 2001.
    [33] L. Chow, “Preface, the intelligent building index 10: Health and Sanitation,” 3rd ed., Asian Institute of Intelligent Buildings, Hong Kong, 2004.
    [34] A.T.P. So, K.C. Wong, “On the quantitative assessment of intelligent buildings,” Facilities, vol. 20, no. 5-6, pp. 208-216, 2002.
    [35] R. L. Freeman, “Fundamentals of Telecommunications,” John Wiley & Sons, Inc., New Jersey, US, 1999.
    [36] IEEE Standard Dictionary of Electrical and Electronic Terms, 6th ed., IEEE Std. 100-1996, IEEE, New York, US, 1996.
    [37] (Web)http://www.infotek.com.tw/production/production_02_system.htm
    [38] (Web)http://www.asia-optical.com.tw/product/product_index_3.html?page=Photonics&serial=124&show_hide_cub=124
    [39] R. Ramaswami and K. N. Sivarajan, “Optical networks,” Morgan Kaufmann Publishers, San Francisco, US, 2002
    [40] P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proceedings of the IEEE, vol. 94, issue 5, pp. 952-985, Jun. 2006.
    [41] 鄭婉羚,“光纖光柵式雙向光信號塞取多工機之研究,” 國立台灣科技大學碩士論文, 2006.
    [42] 洪智明,“分波多工系統用之兩種光纖放大器研製,” 國立台灣科技大學碩士論文, 2002.
    [43] 洪福春, “寬頻高增益之拉曼光纖放大器,” 國立台灣科技大學碩士論文, 2002.
    [44] 黃政凱,“前瞻型光纖放大器之研製,” 國立台灣科技大學碩士論文, 2005.
    [45] 蕭淵隆,“高效益光纖放大器研製,” 國立台灣科技大學碩士論文, 2006.
    [46] 林大維, “拉曼光纖放大器特性改良之研究,” 國立台灣科技大學碩士論文, 2007.
    [47] 廖顯奎, “光纖放大器及光纖光柵組成裝置之研製及其於分波多工光通信系統之應用,” 國立交通大學博士論文, 1999.
    [48] 廖協虹, “(C+L)-band 摻鉺光纖放大器的研製及應用,” 國立台灣科技大學碩士論文, 2003.
    [49] 陳威廷, “寬頻摻鉺光纖放大器之優化研製,” 國立台灣科技大學碩士論文, 2007.
    [50] L. Dou, M. Li, Z. Li, A. Xu, C. Y. Lan and S. K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal pump double-pass scheme,” Optical Engineering, vol. 45, no. 9, Sep. 2006.
    [51] S. K. Liaw, L. Dou and A. Xu, “Fiber-Bragg-grating-based dispersion compensated and gain-flattened Raman fiber amplifier,” Optics Express, vol. 15, no. 19, pp. 12356-12361, Sep. 2007.

    QR CODE