簡易檢索 / 詳目顯示

研究生: 方冠鈞
Kuan-Chun Fang
論文名稱: 適用於雷達系統以及生醫感測系統之資料轉換器電路設計
Data Converter Designs for Radar Systems and for Biomedical Applications
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 鍾勇輝
Yung-Hui Chung
陳信樹
Hsin-Shu Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 160
中文關鍵詞: 直接切換式技術冗餘位元技術翻轉式電源隨偶器全電容式輸入衰減技術自動增益控制系統AB類放大器平行轉串列輸出介面
外文關鍵詞: Direct switching SAR ADC, Redundancy technique, Flipped voltage follower, Capacitive input attenuation technique, Automatic gain control, Class-AB buffer amplifier, 3D-MOM capacitor, Parallel to serial interface
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對逐次逼近式類比數位轉換器提出兩個研究主題,第一個研究主題為應用於無線生醫監測系統之高速高解析度類比數位轉換器,第二個為應用於生醫感測系統之低功耗類比數位轉換器以及自動增益控制系統。

    為了達到高速之需求,第一個研究主題採用直接切換式架構以大幅降低邏輯電路之傳播延遲,且透過提出之自適性迴路延遲控制電路來節省更多的電容陣列切換時間,使單通道之轉換器取樣率可高達50MHz取樣率,並藉由冗餘位元技術,使轉換器在高速運作下仍具有些許容錯能力,使晶片更加穩固。而由於高速運作,為避免轉換器之參考電壓因打線及電路板走線之大電感而導致震盪,參考電壓緩衝器電路亦實現於晶片上。

    在生醫感測領域中,低功耗設計為主要考量,而為了最小化轉換器功耗並保持足夠速度,第二個研究主題採用了全電容式輸入訊號衰減技術,將前級放大器之輸出訊號控制在轉換器之滿量程範圍內,使得轉換器之操作電壓可以被單獨提供,不必依賴於類比前端感測電路。而為了能順利推動轉換器,前級放大器之設計方式亦為重要考量,本論文提出之前級放大器為基於透過懸浮閘電晶體技術進行設計,藉由懸浮閘類比編程技術來改變放大器內部電晶體之操作特性,因此可針對於不同應用時,進行電路效能最佳化。而內部電路設計為採用AB類放大器架構,以大幅提升放大器之驅動能力及電源轉換效率,同時,還具有良好線性度。對於生醫應用而言,不同種類生理訊號之振幅差異甚大,為了確保轉換器擁有足夠信噪比,我們亦提出一數位式自動增益控制系統,藉由觀察轉換器之輸出結果,判斷當前訊號振幅大小,並透過迴授控制來調整前級放大器之增益,以最大化轉換器之信噪比,另外,採用自動增益控制系統還能避免設計高解析度轉換器之需求。

    第一個設計為透過聯電55nm低功耗互補式金氧半導體製程實現一十二位元以及供應電壓為1.2伏之類比數位轉換器,於每秒五千萬次取樣率及輸入奈奎斯頻率時之模擬之總消耗功率為0.79毫瓦,SFDR為87.45dB,等效電源轉換效率為7.46fJ/conversion-step。第二個設計為採用台積電0.35um 2P4M 互補式金氧半導體製程,實現三個類比數位轉換器以及一自動增益控制系統,前兩個轉換器設計目的為驗證自製電容之線性度,而設計之單位容值分別設計為2.35fF及1fF,第三個轉換器設計目的為降低轉器之功耗,因此採用了輸入衰減技術。量測之前兩個轉換器於每秒二十萬次取樣率及供應電壓為2.5伏時之結果各別為,總功耗為46.7及43.47微瓦、有效位元為9.7及9.65位元、轉換效率為280.7及270fJ/conversion-step。而具輸入衰減技術之轉換器於每秒十萬次取樣率、供應電壓為1.2及2.5V時之量測結果為,總功耗為4.6微瓦、有效位元為9.7位元、轉換效率為54.9fJ/conversion-step。整體而言,此具輸入衰減技術轉換器之電源轉換效率約提升了五倍,而提出之自動增益控制系統之有效位元模擬結果可高達近乎8位元。

    然而為了預防未來類比前端感測電路與自動增益控制系統整合腳位不足問題,本論文亦提出一平行輸入轉串列輸出電路,此電路會把轉換器之平行輸出數位碼轉為串列輸出,而量測結果為功能正確。最後,值得注意的是,本論文提出之數位式自動增益控制電路及平行輸入轉串列輸出電路皆採用製程提供之標準數位元件進行設計,以降低設計複雜度。


    This thesis presents two research topics for successive-approximation-register analog-to-digital converters(SAR ADCs). The first design is a high speed and high resolution SAR ADC for biomedical wireless monitoring system. The second designs are the low power SAR ADCs and the automatic-gain-control(AGC) system for biomedical sensing front-end system.

    For wireless monitoring system, the high speed ADC is required. To achieve high speed, the direct-switching(DS) structure is adopted to increase the speed by reducing the digital prorogation delay , and the proposed adaptive delay controller can further improve the speed. In order to own some error tolerance capability and make the ADC more robust, the redundancy technique is also implemented on the chip.

    For biomedical applications, the power consumption the is main design consideration. To minimize the power consumption and maintain enough speed, the capacitive input attenuation(CIA) technique is adopted to attenuate the output signal of the input driver into the full range of ADC. Hence the supply voltage of ADC can be provided individually instead of depending on the analog sensing front end(AFE) chain. To well driver the ADC, the design of input driver is also significant. Based on the floating-gate-MOS(FG-MOS) techniques, the performance of the proposed input driver can be optimized in different applications by programming the FG-MOS. For the amplifier design, the class-AB type amplifier is adopted to increase the driving capability and power efficiency, but also maintaining good linearity. For biomedical sensing system, due to the large dynamic range of biomedical signals, an AGC system is proposed to maximize the signal-to-noise ration(SNR) of ADC by automating control the gain of the input driver.

    The first design is a 12-bit DS SAR ADC with 1.2V supply voltage, fabricating by UMC 55nm low power process. At 50MS/s and nyquist input frequency, the DS SAR ADC consumes 0.79mW and achieves the SFDR of 87.45dB from simulation result. The figure-of-merit(FoM) is around 7.46 fJ/conversion-step. The second designs are fabricated TSMC 0.35um 2P4M process with cell-based-design-kit(CBDK). Three SAR ADCs and one AGC system are developed. Two of the SAR ADCs are aiming to verify the linearity of the DACs, both of the DAC's unit capacitor value are 2.35fF and 1fF, respectively. The third ADC design is for reducing the power consumption, therefore, the CIA technique is adopted. Measuring the first two SAR ADCs with 2.5V supply voltage and 200KS/s sampling rate, the power consumption are around 46.7uW and 43.47uW. Reaching the effective-number-of-bit(ENoB) up to 9.7 and 9.65 bits. After calculating, the FoM values are 280.7 and 270 fJ/conversion-step. Measuring the CIA SAR ADC with 100KS/s sampling rate and 1.2V supply voltage. The ENoB can also up 9.7 bits, and the FoM value can be down to 54.9 fJ/conversion-step, which is around five times less than the first two developed SAR ADCs. Moreover, the ENoB of the proposed digital AGC system can also reach around 8 bits from the simulation result.

    Last, a parallel-to-serial interface(PSI) circuit is also developed to reduce chip area and save the pin numbers for the integration of AFE chain and AGC system in the future. The PSI function is verified under 2.5V supply voltage.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Fundamental SAR ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Power Efficient SAR ADCs . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Switching Methods . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 CAP and DAC Design . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 High Conversion Rate SAR ADCs . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 SAR ADC Structures . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Redundancy Techniques . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Capacitive Input Attenuation Techniques . . . . . . . . . . . . . . . . . . 19 2.5 Automatic Gain Control Techniques . . . . . . . . . . . . . . . . . . . . 23 3 The High Speed SAR ADC in 55nm-Low-Power Process . . . . . . . . . . . . 27 3.1 The State-of-Art High Speed SAR ADC Approaches . . . . . . . . . . . 28 3.2 12-Bit-50MS/s SAR ADC with Direct Switching Scheme and Adaptive Delay Control Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.1 System Level Timing Analysis . . . . . . . . . . . . . . . . . . . 35 3.2.2 Direct Switching Logics Design . . . . . . . . . . . . . . . . . . 36 3.2.3 Proposed Adaptive Delay Control Circuit Design . . . . . . . . . 41 3.2.4 Noise Arrangement and Analysis . . . . . . . . . . . . . . . . . 43 3.2.5 Capacitive DAC Design . . . . . . . . . . . . . . . . . . . . . . 44 3.2.6 Bootstrapped Switch Design . . . . . . . . . . . . . . . . . . . . 49 3.2.7 Dynamic Comparator Design . . . . . . . . . . . . . . . . . . . 53 3.2.8 Digital Error Correction Circuit Design . . . . . . . . . . . . . . 58 3.3 Layout and Simulation Result . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 Chip Core Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.2 Building Block Simulation Result . . . . . . . . . . . . . . . . . 62 3.4 SAR ADC Reference Buffer Design . . . . . . . . . . . . . . . . . . . . 71 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 The Low Power SAR ADCs in 0.35um Process . . . . . . . . . . . . . . . . . 84 4.1 10-BIT-200KS/s Conventional SAR ADCs . . . . . . . . . . . . . . . . 84 4.1.1 Capacitor Arrays Design . . . . . . . . . . . . . . . . . . . . . . 86 4.1.2 Bootstrapped Sample and Hold Switch Design . . . . . . . . . . 89 4.1.3 Dynamic Comparator Design . . . . . . . . . . . . . . . . . . . 91 4.1.4 PSI Interface Design . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2 10-BIT-100KS/s SAR ADC with Capacitive Input Attenuation Technique 100 4.2.1 Capacitive Input Attenuation Circuit Design . . . . . . . . . . . . 100 4.2.2 Layout and Measurement Results . . . . . . . . . . . . . . . . . 102 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5 A Digital Automatic Gain Control System in 0.35um Process . . . . . . . . . . 105 5.1 The 10-BIT CIA SAR ADC with the proposed Variable Gain Input Driver 106 5.1.1 The Required Specification of Input Driver . . . . . . . . . . . . 106 5.1.2 Integration and Simulation Results . . . . . . . . . . . . . . . . . 112 5.2 The Proposed Digital AGC System . . . . . . . . . . . . . . . . . . . . . 114 5.2.1 The Proposed AGC Algorithm and Architecture . . . . . . . . . . 116 5.2.2 Ideal AGC System Simulation . . . . . . . . . . . . . . . . . . . 119 5.2.3 AGC Chip Implementation . . . . . . . . . . . . . . . . . . . . . 123 5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6 Conclusion and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    [1] B. P. Ginsburg and A. P. Chandrakasan, “A 500-MS/s 5-bit ADC in 65nm CMOS with split capacitor array DAC,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739 – 747, 2007.
    [2] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731 – 740, 2010.
    [3] G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, “10-bit 30-MS/s SAR ADC using a switchback switching method,” IEEE Transactions on Very Large Scale Integration Systems, vol. 21, no. 3, pp. 584 – 588, 2013.
    [4] S. H. Wan, C.-H. Kuo, S. J. Chang, G. Y. Huang, C. P. H. G. J. R. K. T. Chiou, and C. H. Ho, “A 10-bit 50-MS/s SAR ADC with techniques for relaxing the requirement on driving capability of reference voltage buffers,” IEEE Proceedings of the Asian Solid-State Circuits Conference (A-SSCC), 2010.
    [5] Y. Zhu and et al., “A 10-bit 100-MS/s reference-free SAR ADC in 90nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111–112, 2010.
    [6] Y. Lin, C. Liu, G. Huang, Y. Shyu, Y. Liu, and S. Chang, “A 9-bit 150-MS/s subrange ADC based on SAR architecture in 90nm CMOS,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 60, no. 3, pp. 570–581, 2013.
    [7] C. C. Liu and et al., “A 10-bit 100-MS/s 1.13-mW SAR ADC with binary-scaled error compensation,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC), 2010.
    [8] T. P. Kearney, “Programmable input range ADC,” Analog Devices Inc., 2006.
    [9] W. Luo, S. Chang, C. Huang, and H. Wu, “A 11-bit 35-MS/s wide input range SAR ADC in 180nm CMOS process,” International Symposium on VLSI Design, Automation and Test, pp. 1–4, 2018.
    [10] O. Jeon, R. Fox, and B. Myers, “Analog AGC circuitry for a CMOS WLAN receiver,” IEEE Journal of Solid-State Circuits, vol. 41, no. 10, pp. 2291–2300, 2006.
    [11] J. Alegre-Pérez, B. Calvo, and S. Celma, “A high-performance CMOS feedforward AGC circuit for a WLAN receiver,” Trans. Ind. Electron, vol. 57, no. 8, pp. 2851– 2857, 2010.
    [12] J. Wu and et al., “A 2.7-mW/channel 48-1000 MHz direct sampling full-band cable receiver,” IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 845–859, 2016.
    [13] B. Razavi, “Design considerations for interleaved ADCs,” IEEE Journal of SolidState Circuits, vol. 48, no. 8, pp. 1806–1817, 2013.
    [14] H. Chen, Y. Liu, Y. Lin, and H. Chen, “A 3-mW 12-bit 10-MS/s sub-range SAR ADC,” IEEE Proceedings of the Asian Solid-State Circuits Conference (A-SSCC), pp. 153–156, 2009.
    [15] G. Huang, S. Chang, Y. Lin, C. Liu, and C. Huang, “A 10-bit 200-MS/s 0.82-mW SAR ADC in 40nm CMOS,” IEEE Proceedings of the Asian Solid-State Circuits Conference (A-SSCC), pp. 289–292, 2013.
    [16] G. V. d. Plas and B. Verbruggen, “A 150-MS/s 133-uW 7-bit ADC in 90nm digital CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2631–2640, 2008.
    [17] C. C. Lee and M. P. Flynn, “A SAR-assisted two-stage pipeline ADC,” IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 859–869, 2011.
    [18] C. Liu, M. Huang, and Y. Tu, “A 12-bit 100-MS/s SAR-Assisted Digital-Slope ADC,” IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2941–2950, 2016.
    [19] B. Razavi, “The bootstrapped switch,” IEEE Solid-State Circuits Magazine, 2015.
    [20] B. Razavi, “The StrongARM latch,” IEEE Solid-State Circuits Magazine, 2015.
    [21] C. Li, C. Chan, Y. Zhu, and R. P. Martins, “Analysis of reference error in high-speed SAR ADCs with capacitive DAC,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 66, no. 1, pp. 82–93, 2019.
    [22] X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW fully integrated programmable biomedical sensor interface chip,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1067 – 1077, 2009.
    [23] T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, and S. Y. Peng, “A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1743 – 1754, 2018.
    [24] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-µW 10-bit 200-KS/s SAR ADC with a bypass window for biomedical applications,” IEEE Journal of SolidState Circuits, vol. 47, no. 11, pp. 2783 – 2795, 2012.
    [25] J. Guerber, H. Venkatram, M. Gande, A. Waters, and U.-K. Moon, “A 10-bit ternary SAR ADC with quantization time information utilization,” IEEE Journal of SolidState Circuits, vol. 47, no. 11, pp. 2604 – 2613, 2012.
    [26] F. M. Yaul and A. P. Chandrakasan, “A 10-bit SAR ADC with data-dependent energy reduction using LSB-first successive approximation,” IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2825 – 2833, 2014.
    [27] D. Zhang, A. Bhide, and A. Alvandpour, “A 53-nW 9.1-ENOB 1-KS/s SAR ADC in 0.13um CMOS for medical implant devices,” IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1585 – 1593, 2012.
    [28] S. E. Hsieh and C. C. Hsieh, “10-bit 30-MS/s SAR ADC using a switchback switching method,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 63, no. 12, pp. 1171 – 1275, 2016.
    [29] V. Hariprasath, J. Guerber, S. H. Lee, and U. K. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” IEEE Electronics Letters, vol. 46, no. 9, pp. 620–621, 2010.
    [30] B. P. Ginsburg and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” IEEE Proceedings of the International Symposium on Circuits and Systems, vol. 1, pp. 184–187, 2005.
    [31] J. Craninckx and G. van der Plas, “A 65-fJ/conversion-step 0-to-50-MS/s 0-to-0.7mW 9-bit charge-sharing SAR ADC in 90nm digital CMOS,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC), pp. 246–600, 2007.
    [32] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit charge redistribution ADC consuming 1.9-mW at 1-MS/s,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007–1015, 2010.
    [33] C. Liou and C. Hsieh, “A 2.4-to-5.2-fJ/conversion-step 10-bit 0.5-to-4-MS/s SAR ADC with charge-average switching DAC in 90nm CMOS,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC), vol. 45, no. 5, pp. 280– 281, 2013.
    [34] H. Tai, Y. Hu, H. Chen, and H. Chen, “A 0.85-fJ/conversion-step 10-bit 200-kS/s subranging SAR ADC in 40nm CMOS,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC), vol. 49, no. 12, pp. 196–197, 2014.
    [35] Y. Cheng and K. Tang, “A 0.5-V 1.28-MS/s 10-bit SAR ADC with switching detect logic,” IEEE Proceedings of the International Symposium on Circuits and Systems, pp. 293–296, 2015.
    [36] Y. Song, Z. Xue, Y. Xie, S. Fan, and L. Geng, “A 0.6-V 10-bit 200-KS/s fully differential SAR ADC with incremental converting algorithm for energy efficient applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 4, pp. 449–458, 2016.
    [37] P. Lee, J. Lin, and C. Hsieh, “A 0.4-V 1.94-fJ/conversion-step 10-bit 750-KS/s SAR ADC with input-range-adaptive switching,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 12, pp. 2149–215, 2016.
    [38] J. Lin and C. Hsieh, “A 0.3-V 10-bit SAR ADC with first 2-bit guess in 90nm CMOS,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 3, pp. 562–572, 2017.
    [39] Y. Chung, C. Yen, P. Tsai, and B. Chen, “A 12-bit 40-MS/s SAR ADC with a fastbinary-window DAC switching scheme,” IEEE Transactions on Very Large Scale Integration Systems, vol. 26, no. 10, pp. 1989–1998, 2018.
    [40] Z. Ding, X. Zhou, and Q. Li, “A 0.5– 1.1-V adaptive bypassing SAR ADC utilizing the oscillation-cycle information of a VCO-based comparator,” IEEE Journal of Solid-State Circuits, vol. 54, no. 4, pp. 968–977, 2019.
    [41] Y. O. Yang and K. Tang, “An energy-efficient SAR ADC with event-triggered error correction,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 66, no. 5, pp. 723–72, 2019.
    [42] J. Lin and C. Hsieh, “A 0.3-V 10-bit 1.17-fJ/conversion-step SAR ADC with merge and split switching in 90nm CMOS,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 62, no. 1, pp. 70–79, 2015.
    [43] F. Kuttner, “A 1.2-V 10-bit 20-MSample/s non-binary successive approximation ADC in 0.13µm CMOS,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC), 2002.
    [44] S. W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13um CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2269–2680, 2006.
    [45] J. Tsai and et al., “A 0.003-mm2 10-bit 240-MS/s 0.7-mW SAR ADC in 28nm CMOS with digital error correction and correlated-reversed switching,” IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1382–1398, 2015.
    [46] C. Liu, “A 10-bit 320-MS/s low cost SAR ADC for ieee 802.11ac applications in 20nm CMOS,” IEEE Proceedings of the Asian Solid-State Circuits Conference (ASSCC), pp. 77–80, 2014.
    [47] M. Ding, P. Harpe, Y. Liu, B. Busze, K. Philips, and H. de Groot, “A 46-uW 13-bit 6.4-MS/s SAR ADC with background mismatch and offset calibration,” IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 423–432, 2017.
    [48] W. A. Serdijn, A. C. van der Woerd, J. Davidse, and A. H. M. van Roermund, “A low-voltage low-power fully-integratable automatic gain control for hearing instruments,” IEEE Journal of Solid-State Circuits, vol. 29, pp. 943–946, 1994.
    [49] R. Harjani, “A low-power CMOS VGA for 50-MS/s disk drive read channels,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, pp. 370–376, 1995.
    [50] A. Vouilloz, M. Declercq, and C. Dehollain, “A low power CMOS superregenerative receiver at 1 GHz,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 440–451, 2001.
    [51] C. C. Hsu and J. T. Wu, “A highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier,” IEEE Journal of Solid-State Circuits, vol. 38, p. 1663, 2003.
    [52] A. Abid, “The path to the software-defined radio receiver,” IEEE Journal of SolidState Circuits, vol. 42, no. 5, pp. 954–966, 2007.
    [53] J. M. Khoury, “On the design of constant settling time AGC circuits,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 283–294, 1998.
    [54] W. Kluge, L. Dathe, R. Jaehne, S. Ehrenreich, and D. Eggert, “A 2.4 GHz CMOS transceiver for 802.11b wireless LANs,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC), pp. 360 – 361, 2003.
    [55] C. Liu, Y. Yan, W. Goh, Y. Xiong, L. Zhang, and M. Madihian, “A 5-Gb/s automatic gain control amplifier with temperature compensation,” IEEE Journal of Solid-State Circuits, vol. 47, no. 6, pp. 1323–1333, 2012.
    [56] K.I.Wu and et al., “A fast-settling high linearity auto gain control for broadband OFDM-based PLC system,” IEEE Proceedings of the International Symposium on Circuits and Systems, pp. 2852–2855, 2015.
    [57] S. Ray and M. M. Hella, “A 10-Gb/s inductorless AGC amplifier with 40-dB linear variable gain control in 0.13um CMOS,” IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 440–456, 2016.
    [58] B. Razavi, “Problem of timing mismatch in interleaved ADCs,” IEEE, 2012.
    [59] C. Lin, Y. Wei, and T. Lee, “A 10-bit 2.6-GS/s time-interleaved SAR ADC with background timing-skew calibration,” IEEE Proceedings of the International SolidState Circuits Conference (ISSCC), pp. 468–469, 2016.
    [60] W. Jiang, Y. Zhu, C. Chan, B. Murmann, S. U, and R. P. Martins, “A 7-bit 2-GS/s time-interleaved SAR ADC with time skew calibration based on current integrating sampler,” IEEE Proceedings of the Asian Solid-State Circuits Conference (A-SSCC), pp. 235–238, 2018.
    [61] Y. Chung and Y. Hsu, “A 12-bit 100-MS/s subrange SAR ADC with a foreground offset tracking calibration scheme,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 66, no. 7, pp. 1094–1098, 2019.
    [62] S. Liu, T. Rabuske, J. Paramesh, L. Pileggi, and J. Fernandes, “Analysis and background self-calibration of comparator offset in loop-unrolled SAR ADCs,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 65, no. 2, pp. 458–470, 2018.
    [63] L. Chen, K. Ragab, X. Tang, J. Song, A. Sanyal, and N. Sun, “A 0.95-mW 6-bit 700-MS/s single-channel loop-unrolled SAR ADC in 40nm CMOS,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 64, no. 3, pp. 244–248, 2017.
    [64] C. Wu and J. Yuan, “A 12-bit, 300-MS/s single-channel pipelined-SAR ADC with an open-loop MDAC,” IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1446– 1454, 2019.
    [65] Y. Lim and M. P. Flynn, “A 1-mW 71.5-dB SNDR 50-MS/s 13-bit fully differential ring-amplifier-based SAR-assisted pipeline ADC,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC), pp. 1–3, 2015.
    [66] J. Zhong, Y. Zhu, C. Chan, S. Sin, S. U., and R. P. Martins, “A 12-bit 180-MS/s 0.068-mm2 with full-calibration-integrated pipelined-SAR ADC,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 64, no. 7, pp. 1684–1695, 2017.
    [67] S. Lee, S. Park, H. Park, and J. Sim, “A 21-fJ/Conversion-Step 100-KS/s 10-bit ADC with a low-noise time-domain comparator for low-power sensor interface,” IEEE Journal of Solid-State Circuits, vol. 46, no. 3, pp. 651–659, 2011.
    [68] P. M. Figueiredo and J. C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 53, no. 7, pp. 541–545, 2006.
    [69] J. Luo, J. Li, N. Ning, Y. Liu, and Q. Yu, “A 0.9-V 12-bit 100-MS/s 14.6-fJ/ Conversion-Step SAR ADC in 40nm CMOS,” IEEE Transactions on Very Large Scale Integration Systems, vol. 26, no. 10, pp. 1980–1988, 2018.
    [70] C. Chan and et al., “60-dB SNDR 100-MS/s SAR ADCs with threshold reconfigurable reference error calibration,” IEEE Journal of Solid-State Circuits, vol. 52, no. 10, pp. 2576–2588, 2017.
    [71] C. Liu, C. Kuo, and Y. Lin, “A 10-bit 320-MS/s low-cost SAR ADC for IEEE 802.11ac applications in 20nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2645–2654, 2015.
    [72] T.-Y. Wang, M.-R. Lai, C. M. Twigg, , and S.-Y. Peng., “A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411–422, 2014.
    [73] S.-Y. Peng, Y.-H. Lee, T.-Y. Wang, H.-C. Huang, M.-R. Lai, C.-H. Lee, and L.-H. Liu, “A power-efficient reconfigurable OTA-C filter for low-frequency biomedical applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 99, no. 99, pp. 1 – 13, 2017.
    [74] P. S.-Y., L. L.-H., C. P.-K., W. T.-Y., and H.-Y. Li, “A power-efficient reconfigurable output-capacitor-less low-drop-out regulator for low-power analog sensing front-end,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 64, no. 6, pp. 1318 – 1327, 2017.

    無法下載圖示 全文公開日期 2025/06/03 (校內網路)
    全文公開日期 2025/06/03 (校外網路)
    全文公開日期 2025/06/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE