簡易檢索 / 詳目顯示

研究生: 舒浩威
Hao-Wei Shu
論文名稱: 突發式光接收積體電路設計與實現
Design and Implementation of the Burst-Mode Optical Receiving Integrated Circuit
指導教授: 劉政光
Cheng-Kuang Liu
口試委員: 徐世祥
Shih-Hsiang Hsu
周肇基
Jau-Ji Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 突發式光偵測器轉阻放大器增益自動控制電路時脈資料回復電路
外文關鍵詞: burst-mode, photodetector, transimpedance amplifier, automatic-gain-control, clock and data recovery circuit
相關次數: 點閱:284下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討光通訊接收端積體電路的設計與實現,包含光偵測器、增益自動控制的轉阻放大器與時脈資料回復電路。
    第一部份利用商用矽鍺基製程實現了光偵測器,使用台積電(TSMC) 0.35μm SiGe BiCMOS製程,探討光電晶體的電流增益特性與指叉式佈局來增加光偵測器的使用效率。量測結果顯示該光偵測器可以操作在低於1V的供應電壓,響應度在650nm時為0.293mA/W,850nm時為0.15mA/W。
    第二部份為一種轉阻放大器的實現,使用台積電(TSMC) 0.35μm SiGe BiCMOS製程,採用RGC架構作為輸入級,有效隔絕了輸入的寄生電容,提高了頻寬表現。在供應電壓3.3V與輸入電容0.25pF時,增益為58.47 dBΩ,頻寬為2.78GHz,總功率消耗58.6mW。
    第三部份利用前面的設計加上了可變增益的轉阻放大器放大器和自動增益控制電路,使用台積電(TSMC) 0.35μm SiGe BiCMOS製程來實現。於供應電壓3.3V與輸入電容0.25pF時量測所得輸入動態範圍2.5~180μA,動態增益範圍65.7~83 dBΩ,對應動態頻寬為1.8~2GHz,最高可工作於2.5Gbps,總功率消耗143.5mW。
    最後,我們設計與模擬可快速鎖定的時脈資料回復電路,並採用閘控式電壓控制振盪器。本設計可大幅縮減鎖定時間,模擬結果顯示其最高傳輸速率為900Mbps。


    In this thesis, the design and fabrication of integrated optical receiver devices are presented, including a photodetector, an automatic-gain- control (AGC) transimpedance amplifier (TIA) and a clock and data recovery (CDR).
    In the first part, we present a photodetector using the TSMC 0.35μm SiGe BiCMOS 3P3M process. The responsivity of detector can be enhanced by the gain of BJT and the finger-type layout. The test chip works below 1V supply and the responsivities are 0.293mA/W for the red light at 650nm and 0.15mA/W for the IR light at 850nm.
    In the second part, the design of a TIA is studied. The fabricated TIA exhibits the regulated cascade (RGC) type at the input stage and is designed using the TSMC 0.35μm SiGe BiCMOS 3P3M process. The RGC stage isolates the input parasitic capacitance and makes bandwidth performance better. Measured results show the bandwidth of 2.78GHz and the gain of 58.47 dBΩ with 0.25pF input capacitance. The power consumption is 58.6mW for 3.3V supply.
    In the third part, we added a varible gain amplifier and an automatic-gain-control circuit on the design above using TSMC 0.35μm SiGe BiCMOS 3P3M process. Measured results show the dynamic range of 2.5~180μA, the bandwidth of 1.8~2GHz and the gain of 65.7~83 dBΩ with 0.25pF input capacitance. The power consumption is 143.5mW for 3.3V supply.
    Finally, we designed and simulated a clock and data recovery IC. A gate-controlled oscillator was employed. This design speeds up the lock time. Result indicates a transmission rate of 900Mbps.

    論文摘要 I Abstract III 致謝 IV 目錄 VI 第一章 緒論 1 1.1前言 1 1.2論文大綱 3 第二章 光通訊接收端相關基本架構與概念簡介 5 2.1 光通訊接收端架構簡介 5 2.2光接收電路元件基本概念 6 2.2.1光偵測器 6 2.2.2轉阻放大器與限幅放大器 8 2.2.3增益自動控制電路 10 2.2.4時脈資料回復電路 10 2.3 突發式訊號 11 2.4基本概念 12 2.4.1不歸零資料 12 2.4.2眼圖 13 2.4.3輸入相關雜訊電流(Input-Referred Noise Current) 14 第三章 矽鍺基製程實現檢光光電晶體機制與量測 17 3.1光偵測器介紹 17 3.1.1光偵測器概論 17 3.1.3矽鍺基異質接面光電晶體 20 3.2光電晶體的設計 21 3.4量測結果 25 3.4.1光電晶體的特性曲線 25 3.4.2 LED為光源的特性量測 27 3.5結果討論 32 第四章 轉阻放大器的實作 33 4.1 轉阻放大器簡介 33 4.1.1 開迴路轉阻放大器 (Open-Loop TIA) 34 4.1.2 回授型轉阻放大器(Feedback TIA) 35 4.1.3 Regulated Cascode(RGC)型電路架構 36 4.2 轉阻放大器的設計 39 4.2.1 轉阻放大器的架構簡介 39 4.2.2 改良式 Cherry-Hooper 放大器 41 4.3 轉阻放大器的模擬 42 4.4 轉阻放大器的量測方法與結果 44 4.5討論 47 第五章 增益可自動控制的轉阻放大器電路完整實作 49 5.1增益可自動控制(AGC)電路說明 49 5.1.1增益可自動控制的基本機制 49 5.1.2峰值偵測器 50 5.2 增益可自動控制的轉阻放大器設計 52 5.2.1增益可自動控制的轉阻放大器架構簡介 52 5.2.2增益自動控制電路 53 5.2.3 可變增益改良式 Cherry-Hooper放大器 54 5.2.4直流位準的校正器(DC offset cancellation)和輸出緩衝級 56 5.3 增益可自動控制轉阻放大器模擬 58 5.3.1自動增益控制電路的模擬 58 5.3.2 整體增益自動控制轉阻放大器模擬 59 5.4增益可自動控制轉阻放大器的量測結果 63 5.5光偵測器與轉阻放大器的整合 66 5.6討論 67 第六章時脈資料回復電路設計 69 6.1時脈資料回復電路簡介 69 6.2資料回復電路的設計 71 6.2.1料回復電路架構 71 6.2.2相位頻率偵測器 73 6.2.3充電泵 74 6.2.4閘控式的電壓控制振盪器 76 6.2.5除頻器 79 6.2.6低通濾波器 80 6.3時脈資料回復電路的系統模擬 81 6.4討論 85 第七章 討論與總結 86 7-1總結 86 7-2未來發展與展望 87 參考文獻 89 作者簡介 93

    參考文獻
    [1] 賴信良,「矽鍺基光電晶體與光接收積體電路設計與實現」,碩士論文,國立台灣科技大學,台北,民國98年。
    [2] 楊淳良、趙亮琳、李揚漢、許立根、譚昌文、洪鴻文和曹士林,光纖通信網路,五南圖書出版股份有限公司,台北,第20-21頁,2007。
    [3] Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nature Photonics 3, pp.59-63,2009.
    [4] R. C. Johnson, “IBM jumps 'last hurdle' to on-chip optical communication,” EETimes,March,2010.
    [5] B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw Hill, 2003.
    [6] S.M.Sze and K. K.Ng, Physics of Semiconductor Device, Wiley Interscience, pp.603-604, 2007.
    [7] 章豪順,「適用於超高速數位用戶迴路接收機之類比前端的自動增益器」,碩士論文,國立台灣大學,台北,2001。
    [8] 劉深淵、楊清淵,鎖相迴路,滄海書局,民國九十五年十一月。
    [9] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [10] 蔡亭林,「矽鍺光電晶體與砷化鎵光電晶體之設計與特性分析」,碩士論文,國立中央大學,民國93年。
    [11] D. A. Neamen, Semiconductor Physics & Devices, McGraw Hill , 1998.
    [12] A. Nemecek, G. Zach, S. Swoboda, K. Oberhauser, H. Zimmermann, “Integrated BiCMOS p-i-n photodetectors with high bandwidth and high responsivity,” IEEE Journal of Selected Topics in Quantum Electronics, vol.12, no.6, pp.1469-1475, Nov.-dec. 2006.
    [13] J.-W. Shi, F.M. Kuo, F.-C. Hong, Y.-S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product, ” IEEE Electron Device Letters, vol.30, no.11, pp.1164-1166, Nov. 2009.
    [14] 劉玉章,「短波長光通訊之矽標準製程光檢測器」,碩士論文,國立中央大學,民國96年。
    [15] T. Yin, A.M. Pappu, A.B. Apsel, “Low-cost, high-efficiency, and high-speed SiGe phototransistors in commercial BiCMOS” , IEEE Photonics Technology Letters, vol.18, no.1, January 1, 2006
    [16] Lai Kuang-Sheng, Huang Ji-Chen, K.Y.-J. Hsu, “ Design and properties of phototransistor photodetector in standard 0.35- m SiGe BiCMOS technology,” IEEE Transactions on Electron Devices , vol.55, no.3 , March 2008.
    [17] 黃凡修, 「10Gb/s光纖通訊系統傳送/接收電路模擬與實作」,碩士論文,國立中央大學, 2003.
    [18] S.-M. park, H.-J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications” , IEEE Journal of Solid-State Circuit, vol.39, no.1, January 2004.
    [19] Z. Lu, K.-S. Yeo, J. Ma, M.-A. Do , W.-M. Lim, X. Chen , “Broad-Band Design Techniques for Transimpedance Amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, no.3, pp.590-600, March 2007.
    [20] C.D. Holdenried, M.W. Lynch, J.W. Haslett, “ Modified CMOS Cherry-Hooper amplifiers with source follower feedback in 0.35μm technology, ” Solid-State Circuits Conference, 2003. ESSCIRC '03., vol., no., pp.553-556, 16-18 Sept. 2003.
    [21] W.-Z. Chen, Y.-L. Cheng, D.-S. Lin , “A 1.8-V 10-Gb/s fully integrated CMOS optical receiver analog front-end, ” IEEE Journal of Solid-State Circuits, vol.40, no.6, pp. 1388-1396, June 2005.
    [22] M. Li, B. Hayes-Gill, I. Harrison, “6 GHz transimpedance amplifier for optical sensing system in low-cost 0.35 μm CMOS, ” Electronics Letters , vol.42, no.22, pp.1278-1279, Oct. 26 2006
    [23] Z. Lu, K.-S. Yeo , W.-M. Lim , M.-A Do, B.-C. Chye, “Design of a CMOS Broadband Transimpedance Amplifier With Active Feedback, ” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.18, no.3, pp.461-472, March 2010
    [24] S.-B. Park, J.E. Wilson, I. Mohammed, “The CHIP - peak detectors for multistandard wireless receivers, ” IEEE Circuits and Devices Magazine, vol.22, no.6, pp.6-9, Nov.-Dec. 2006.
    [25] C.-F. Liao, S.-l. Liu, “A 10Gb/s cmos AGC amplifier with 35dB dynamic range for 10Gb ethernet, ” IEEE International Solid-State Circuits Conference, vol., no., pp.2092-2101, 6-9 Feb. 2006
    [26] C.-F. Liao, S.-I Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm cmos, ” IEEE Journal of Solid-State Circuits, vol.43, no.3, pp.642-655, March 2008.
    [27] I.-H. Wang, S.-I. Liu, “A 0.18-μm cmos 1.25-Gbps automatic-gain-control amplifier, ” IEEE Transactions on Circuits and Systems II: Express Briefs, vol.55, no.2, pp.136-140, Feb. 2008.
    [28] C. Hermans, M.S.J. Steyaert, “A high-speed 850-nm optical receiver front-end in 0.18-/spl mu/m CMOS, ” IEEE Journal of Solid-State Circuits, vol.41, no.7, pp.1606-1614, July 2006.
    [29] H.-Y. Hwang, J.-C. Chien, T.-Y. Chen, L.-H. Lu, “A cmos tunable transimpedance amplifier, ” IEEE Microwave and Wireless Components Letters, vol.16, no.12, pp.693-695, Dec. 2006.
    [30] 蔡宗興,「百億位元矽鍺光纖通信類比前端自動增益控制放大器設計」,碩士論文,國立台灣大學,2003。
    [31] C.M. Tsai and L.R. Huang, “A 21mW 2.5Gb/s 15kΩ self compensated differential transimpedance amplifier,” IEEE International Solid-State Circuits Conference, pp.234-235, Feb., 2005.
    [32] G. Keiser, FTTX Concepts and Applications, John Wiley & Sons, 2006.
    [33] M. Banu, A. E. Dunlop, “Clock recovery circuit with instantaneous locking,” Electronics Letters, vol.28, no.23, pp.2127–2130, Nov. 1992.
    [34] B. Analui and A. Hajimiri, “Instantaneous clockless data recovery and demultiplexing,” IEEE Transactions on Circuits Systems-II, Express Briefs, vol.52, no.8, pp.437–441, Aug. 2005.
    [35] C.-K. K. Yang and M. A. Horowitz, “A 0.8- μm CMOS 2.5 Gb/s oversampling receiver and transmitter for serial links,” IEEE Journal of Solid-State Circuits, vol. 31, no. 12, pp.2015–2023, Dec. 1996.
    [36] P.-S. Han, W.-Y. Choi, “1.25/2.5-Gb/s dual bit-rate burst-mode clock recovery circuits in 0.18-μm cmosTechnology,” IEEE Transactions on Circuits and system—II: express briefs, vol.54, no. 1, January 2007.
    [37] F. Fox, W. Bowhill, A. Chandrakasan, “Design of high-performance microprocessor circuits,” IEEE Journal of Solid-State Circuit, vol.33, no.5, May 1998.
    [38] C.-Y. Yang, G.-K.Dehng, J.-M. Hsu, S.-I Liu, “New dynamic flip-flops for high-speed dual-modulus prescaler,” IEEE Journal of Solid-State Circuits, vol.33, no.10, pp.1568-1571, Oct 1998.
    [39] Sung K.-H., L.-S. Kim, “Comments on “new dynamic flip-flops for high-speed dual-modulus prescaler,” IEEE Journal of Solid-State Circuits, vol.35, no.6, pp.919-920, Jun 2000.
    [40] 張璋平,「鎖相迴路架構的頻率合成器與資料回復器設計」,碩士論文,私立大同大學,2002。
    [41] 賴學勤,「1.25 Gbps 0.35μm互補式金氧半自動增益控制放大器之積體電路設計與分析」,碩士論文,國立高雄應用科技大學,2009。

    無法下載圖示 全文公開日期 2015/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE