簡易檢索 / 詳目顯示

研究生: 李昌暐
Chang-Wei Lee
論文名稱: 可動態調整頻寬的遠端泵激 分時分波多工被動光網路
Dynamic Bandwidth Adjustment Based on Remotely Pumped TDM/WDM PON Systems
指導教授: 李三良
San-Liang Lee
劉政光
Cheng-Kuang Liu
口試委員: 楊淳良
none
鄭瑞光
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 123
中文關鍵詞: 動態調整頻寬分時分波多工被動光網路
外文關鍵詞: Dynamic Bandwidth Adjustment, TDM/WDM PON
相關次數: 點閱:201下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個可動態調整頻寬的遠端泵激分時分波多工被動光網路的架構。我們利用混合型分時多工被動光網路/分波多工被動光網路技術解決鏈路傳輸數位訊號時所發生的頻寬超載或輕負載問題,而本論文亦提出射頻上載光纖技術與混合型分時多工被動光網路整合,用以達成射頻類比訊號的動態調整頻寬功能,且由於本架構是以原有的分時多工被動光網路及分波多工被動光網路作為基礎,故系統升級容易,免除重新建置架構的成本及時間費用。
    在我們架構中,為了達到波長路由的效果,我們捨棄了複雜的光開關裝置,轉而利用波長光柵路由器元件的旋轉特性,做到光網路節點及光線路終點頻寬分配功能及調整基台開關數目,以達到降低成本及節省能源的目的。此外,為了補償在遠端節點端使用分路器及波長光柵路由器等元件的功率損失,還在遠端增添一摻鉺光纖,並利用遠端泵激的方式,提供上下行訊號增。
    同時我們建置一個實驗平台,驗證下行10-Gb/s、上行1.25-Gb/s的數位傳輸系統及全球行動通訊系統類比傳輸系統在可動態調整頻寬的遠端泵激分時分波多工被動光網路架構上的可行性。


    This research demonstrates the architecture of Remotely Pumped hybrid PON systems that allow adjusting user bandwidth dynamically. The hybrid PON system combines the time-division-multiplexing (TDM) and the wavelength-division-multiplexing (WDM) passive optical networks (PONs) into one compact architecture.The problem of bandwidth overload and light load while transmitting digital signal can be solved by using the technology of hybrid TDM/WDM PON. We can integrate the RoF technology and hybrid TDM/WDM PON to achieve the function of adjusting bandwidth dynamically for transmitting RF analog signals. Because the architecture is based on the original TDM and WDM PON, this system is easy to upgrade, low cost and has low istallation time.
    In order to achieve wavelength routing in our framework, we use the cyclic characteristic of an array wavelength grating (AWG) instead of a complex optical switching device. It can not only allocate flexible bandwidth in both opticwouls network unit (ONU) and optical line termination (OLT), but also adjust the number of base stations.
    Furthermore, we add an erbium-doped fiber (EDF) in the remote node to compensate the power loss due to the fiber transmission loss and insertion loss from the splitter and AWG in the remote node, the EDF is pumped by a high-power laser at the OLT. The uplink and downlink signal gain can be achieved by using the remote pumping scheme.awg
    We set up an experimental platform to verify the transmission performance for 10-Gb/s downstream and 1.25-Gb/s uplink sigmals. The feasibility of the Remotely Pumped TDM/WDM PON is demonstrated by adjusting the bandwidth for GSM transmission.

    目錄 摘要I AbstractII 目錄VI 圖目錄X 表目錄XIV 第一章 導論1 1.1 前言1 1.2 被動光網路的介紹4 1.3 射頻上載光纖技術(Radio over Fiber,RoF)12 1.4 研究動機16 1.5 論文架構17 第二章 分時分波多工被動光網路18 2.1 前言18 2.2 分時多工被動光網路19 2.3 分波多工被動光網路20 2.3.1 無色光源技術23 2.4 混合型被動光網路28 2.4.1混合型被動光網路架構29 2.4.2論文架構30 2.5 雷利散射原理與特性31 2.6 背向反射對WDM影響探討36 第三章 混合型被動光網路元件特性和系統參數分析38 3.1 前言38 3.2 RoF元件介紹38 3.1.1 傳送端元件介紹38 3.1.2 接收端元件介紹41 3.1.3 光調變方式介紹42 3.2 混合型被動光網路進行雙向傳輸使用之元件介紹43 3.2.1 陣列波導光柵原理及介紹44 3.2.2 摻鉺光纖放大器的放大原理46 3.2.3 拉曼放大(Raman Amplification) 原理與特性50 3.2.4 反射式光半導體放大器原理及介紹51 3.3 訊號量測參數介紹55 3.3.1 EVM 及 ACPR參數介紹55 3.3.2 誤碼率分析58 3.4光訊號雜訊比(Optical Signal Noise Ratio,OSNR )63 第四章 系統設計概念與量測結果66 4.1前言66 4.2系統設計概念67 4.3 AWG特性量測69 4.4系統無線訊號傳輸實驗設置71 4.4.1 系統無線訊號傳輸下行訊號量測72 4.4.2 系統無線訊號傳輸上行訊號量測77 4.5 改良系統實驗設置83 4.5.1 改良系統無線傳輸實驗設計83 4.5.2改良系統無線傳輸下行訊號量測84 4.5.3 改良系統無線傳輸上行訊號量測87 4.5.4有線訊號傳輸下行訊號量測90 4.5.5有線訊號傳輸上行訊號量測92 4.5.6多通道訊號傳輸品質量測94 第五章 結論100 5.1成果100 5.2未來研究方向101 參考文獻103

    參考文獻
    [1]張政斌, 利用光載波抑制與分離技術實現光纖到家與微波光纖的混 合式網路系統, 國立清華大學, 2008.
    [2]黃榮星, 應用於Radio-over-Fiber系統之超高速微波光子發射器, 國立中央大學, 2011.
    [3]馮國璋, 光纖到家試場攻防戰起E-PON/G-PON兩強對峙, 新通訊元 件雜誌, 84期, 2005.
    [4]郭南宏, 雙向WiMAX上載分波多工被動光纖網路設計, 國立台灣科技大學電子系, 2009.
    [5]張忠民, 設計與實現雙向10Gb/s傳輸的遠端泵激分波多工被動光網路, 國立台灣科技大學電子系, 2011.
    [6]F. Effenberger, D. Clearly, O. Haran, G. Kramer, M. Oron, and T. Pfeiffer, “An introduction to PON technologies,” Communications Magazine, IEEE, vol. 45, pp. S17-S25, 2007.
    [7]C. F. Lam, Passive Optical Networks: Principles and Practice, Academic Press, 2007.
    [8]鄭伯順, 新世代電信資訊網路與傳播應用服務技術發展之研究, 交通部科技顧問室, 2005.
    [9]黃振發, 光纖網路系統及重要元件, 國立成功大學, 2008.
    [10]胡懿存, 使用法布里-珀羅雷射二極體之光通道故障監測技術, 淡江大學, 2010.
    [11]Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Super-Broadband Access Services Delivery in Optical-Wireless Networks,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007. Conference on, 2007, pp. 1-8.
    [12]楊淳良, 光纖通信網路, 五南出版社, 2007.
    [13]樂孜純,光纖通信技術與系統光網絡上卷, 機械工業出版社, 2004.
    [14]J. B. Song, and A. H. M. R. Islam, “Distortion of OFDM Signals on Radio-Over-Fiber Links Integrated With an RF Amplifier and Active/Passive Electroabsorption Modulators,” Lightwave Technology, Journal of, vol. 26, pp. 467-477, 2008.
    [15]J. E. Mitchell, “Performance of OFDM at 5.8 GHz using radio over fibre link,” Electronics Letters, vol. 40, pp. 1353-1354, 2004.
    [16]M. Milos, S. Yuval, K. Pandelis, and J. M. Senior, “Interoperability of GPON and WiMAX for Network Capacity Enhancement amd Resilience,” Journal of Optical Networking, vol. 8, 2009.
    [17]X. Cheng, Y. k. Yeo, Z. Xu, S. Xu, Y. Wang, “Hybrid WDM/TDM passive optical network with dynamic virtual PON (VPON) capability,” in Optical Communication (ECOC), 2010 36th European Conference and Exhibition on, 2010, pp. 1-3.
    [18]鄒志偉, 下一代載波分佈光網路的新穎調制格式, 國立交通大學光電工程系, 2008.
    [19]吳曜東, 光纖通訊系統原理與應用, 全欣資訊圖書股份有限公司, 1994.
    [20]胡至仁, 頻譜分割的非同調性光源在分波多工系統上的應用, 國立中山大學光電工程研究所, 2000.
    [21]H. D. Kim, S. -G. Kang, C. -H. Le, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” Photonics Technology Letters, IEEE, vol. 12, pp. 1067-1069, 2000.
    [22]P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electronics Letters, vol. 37, pp. 1181-1182, 2001.
    [23]H. C. Shin, J. S. Lee, I. K. Yun, S. W. Kim, H. I. Kim, H. S. Shin, S. T. Hwang, Y. J. Oh, K. Oh, and C. S. Shim, “Reflective SOAs optimized for 1.25 Gbit/s WDM-PONs,” in Lasers and Electro-Optics Society, 2004. LEOS 2004. The 17th Annual Meeting of the IEEE, 2004, pp. 308-309 Vol.1.
    [24]E. Wong, K. L. Lee, and T. B. Anderson, “Directly Modulated Self-Seeding Reflective Semiconductor Optical Amplifiers as Colorless Transmitters in Wavelength Division Multiplexed Passive Optical Networks,” Lightwave Technology, Journal of, vol. 25, pp. 67-74, 2007.
    [25]G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “New RSOA devices for extended reach and high capacity hybrid TDM/WDM -PON networks,” in Optical Communication, 2009. ECOC '09. 35th European Conference on, 2009, pp. 1-2.
    [26]M. Zhu, S. Xiao, W. Guo, M. Bi, Z. Zhao, Y. Jin, and W. Hu, “Using wavelength-tunable self-seeding Fabry-Perot laser for upstream transmission in hybrid WDM/TDM PON,” in Communications and Photonics Conference and Exhibition (ACP), 2010 Asia, 2010, pp. 405-406.
    [27]E. Wong, K.-L. Lee, and A. Nirmalathas, “Experimental study on extended reach TDM-, Hybrid-, and WDM-PON configurations based on central office located raman pumps,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS '09. IEEE, 2009, pp. 553-554.
    [28]林漢璿, 降低雷利散射及後向反射之新型WDM-PON架構, 台灣科技大學, 2008.
    [29]D. Derickson, “Fiber Optic Test and Measurements,” Hewlett-Packard Professional Books, 1998.
    [30]J. Bromage, “Raman amplification for fiber communications systems,” Lightwave Technology, Journal of, vol. 22, pp. 79-93, 2004.
    [31]Y. J. Lee, K. Y. Cho, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, “Reflection tolerance of RSOA-based WDM PON,” in Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on, 2008, pp. 1-3.
    [32]M. D. Feuer, M. A. Thomas, and L. M. Lunardi, “Backreflection and loss in single-fiber loopback networks,” in IEEE Photonics Technology Letters, , vol. 12, pp. 1106-1108, 2000.
    [33]N. Buldawoo, S. Mottet, H. Dupont, D. Sigogne, and D. Meichenin, “Transmission experiment using a laser amplifier-reflector for DWDM access network,” in Optical Communication, 1998. 24th European Conference on, 1998, pp. 273-274 vol.1.
    [34]M. Fujiwara, J.-I. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” Journal of Lightwave Technology, vol. 24, pp. 740-746, 2006.
    [35]C. Arellano and J. Prat, “On the influence of ONU-Gain on Transmission in Centrally Seeded-light WDM-PONs,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007, pp. 1-3.
    [36]吳奇璋, 分布反饋式雷射與行波式電致吸收調變器積體化元件製作, 台灣科技大學, 2010.
    [37]董德國, 光纖通訊, 東華書局股份有限公司,2005.
    [38]陳昇慶, 基於陣列波導光柵與波長轉換技術之全光式路由與交換系統, 國立清華大學, 2009.
    [39]X. Sun, Z. Wang, C. -K. Chan, and L. -K. Chen, “A novel star-ring protection architecture scheme for WDM passive optical access networks,” in Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC, 2005, p. 3 pp. Vol. 3.
    [40] J. Hecht, Understanding Fiber Optics, Prentice Hall, 2005.
    [41]J. F. Michel, Rare-earth-doped fiber lasers and amplifier, Marcel Dekker, 2001.
    [42]A. H. Beshr and M. H. Aly, “Raman Gain and Raman Gain Coefficient for SiO2, GeO2, B2O3 and P2O5 Glasses,” National in Radio Science Conference, 2007. NRSC 2007, 2007, pp. 1-7.
    [43]Y. Aoki, “Properties of fiber Raman amplifiers and their applicability to digital optical communication systems,” Journal of Lightwave Technology, vol. 6, pp. 1225-1239, 1988.
    [44]陳家銘, 設計製作應用於光閘開關之增益箝制半導體光放大器, 國立台灣科技大學電子工程研究所, 2005.
    [45]謝廷霖, 基於反射式半導體光放大器的分波多工被動光網路之設計, 淡江大學, 2009.
    [46]R. Rajiv, S. Kumar, Optical networks: a practical perspective, Morgan Kaufmann Publishers, 2001.
    [47]許葉立, 同時雙向WiMAX及NRZ訊號上載分波多工被動光纖網路設計, 國立台灣科技大學, 2008.
    [48]K. Chinen, “RCE measurements in RoF of WiMAX with DFB-LDs,” in Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology. OECC/ACOFT 2008. Joint conference of the, 2008, pp. 1-2.
    [49]A. Ghosh, J. G. Andrews, R. Muhamed, “Fundamentals of WiMAX: Understanding Broadband Wireless Networking,” Pearson Education, 2007.
    [50]B. Chomycz, Planning Fiber Optic Networks, McGraw-Hill Professional ,2009.
    [51]R. Engelbrecht, M. Bayer, and L. P. Schmidt, “Numerical calculation of stimulated Brillouin scattering and its suppression in Raman fiber amplifiers,” in Lasers and Electro-Optics Europe, 2003. CLEO/Europe. 2003 Conference on, 2003, p. 641.
    [52]C. S. Park, C. G. Lee, and C.-S. Park, “Experimental Demonstration of 1.25-Gb/s Radio-Over-Fiber Downlink Using SBS-Based Photonic Upconversion,” Photonics Technology Letters, IEEE, vol. 19, pp. 1828-1830, 2007.
    [53]A. B. Ruffin, “Stimulated brillouin scattering: an overview of measurements, system impairments, and applications,” Technical Digest: Symposium on Optical Fiber Measurements, 2004, pp. 23-28.


    QR CODE