簡易檢索 / 詳目顯示

研究生: 宋媛媛
Yuan-Yuan Sung
論文名稱: 利用頻譜整形之特性完成高速25G-bit/s x 4 分時分波多工被動光網路系統
Realization of 4x25-Gbit/s TWDM-PON Systems by Spectrum Reshaping
指導教授: 李三良
San-Liang Lee
陳鴻興
Hung-Shing Chen
口試委員: 曹恆偉
Hen-Wai Tsao
吳靜雄
Jing-Shown Wu
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 124
中文關鍵詞: 高速傳輸頻譜整形分時分波被動光網路系統
外文關鍵詞: high speed, spectrum reshaping, TWDM-PON
相關次數: 點閱:193下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出使用10G/s低調變頻寬之直調雷射結合光頻譜濾波器,以達到25Gb/s傳輸效能。針對法布里-比洛析光器及可調式光濾波器兩種光頻譜濾波器,使用光學模擬軟體進行模擬,並以實驗驗證單路25Gb/s傳輸的性能,接著使用具週期性頻譜特性之析光器,實現四路不同波長之直調雷射傳輸,以應用於總傳輸位元率達100Gb/s的分時多工被動光網路。
    由於本論文實驗上使用10Gb/s直調雷射,頻率響應不足傳輸25Gb/s,利用光頻譜濾波提升傳輸位元率及距離的主要原理為,利用直調雷射產生出之頻率調變,經析光器頻譜整形後提升明滅比,並將頻譜響應中的相位變化轉為振幅調變,因而可提升調變頻寬,同時降低光纖色散之影響,使25Gb/s的可在單模光纖傳輸達二十至五十公里距離。且藉由析光器之穿透與反射功率具波長相依之特性,實現直調雷射之波長栓鎖機制,在不須更動網路MAC層的情況下,提升系統架構穩定度。另析光器可同時對等波長間距之陣列雷射同時進行頻譜整形及波長栓鎖,可在較低成本的情況下實現時多分工被動光網路系統。


    We proposed a spectrum reshaping scheme for single-channel 25Gb/s transmission over 20-50km single mode fiber (SMF) by using a 10Gb/s direct modulation laser (DML) with insufficient modulation bandwidth. We compared the effects of two reshaping filters, Fabry-Perot (FP) Etalon and Gaussian shape tunable filter. Both simulation and experiments were carried out to investigate the effectiveness of this scheme. The reshaping filter could cause three effects. The first effect is to convert the frequency modulation (FM) to amplitude modulation (AM) and get a higher Extinction Ratio (ER). The second one is to induce an extra phase shift because of the nonlinear edge slope and reduce the intersymbol interference (ISI) caused by dispersion. The last one is to increase the modulation bandwidth, similar to the function of an equalizer.
    We used the periodic spectral characteristic of an optical etalon to reshape four wavelength-channels simultaneously. Thus, we can realize a transmission of 100 Gb/s total capacity over 20-50km SMF that can be used in splitting ratio of 1:128 time- and wavelength- division multiplexed passive optical network (TWDM-PON) systems. Moreover, the wavelength locking mechanism can also be implemented by the using the same optical etalon in our architecture. We can detect the alteration of the transmission and reflection optical powers of the reshaping filer when the laser wavelength drifts. This mechanism can ensure the system stability without changing the MAC layer.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 導論 1.1前言 1.2研究動機 1.3文獻探討 1.4論文架構 第二章 頻譜整形方法及元件介紹 2.1前言 2.2直調雷射特性介紹 2.2.1啾頻效應的產生及特性 2.2.2啾頻效應與色散之間的關係 2.3直調雷射之頻譜整形 2.4頻譜整形元件-法布里-比洛析光器的介紹 第三章 頻譜整形之模擬 3.1前言 3.2系統參數設定 3.2.1雷射參數設定 3.2.2析光器頻譜整形之設定及模擬結果 3.2.2.1頻譜整形之效果 3.2.2.2相對波長偏移 3.2.3可調式濾波器頻譜整形之設定及模擬結果 3.2.3.1高斯級數為1階之頻譜整形 3.2.3.2高斯級數為1.5階之頻譜整形 3.4頻率響應比較 3.5本章小結 第四章 頻譜整形之實驗 4.1前言 4.2系統量測元件 4.2.1直調雷射之熱調特性量測 4.2.2頻譜整形濾波器特性 4.2.2.1析光器特性量測 4.2.2.2可調式濾波器特性量測 4.3析光器與可調式濾波器模擬驗證 4.3.1量測架構 4.3.1明滅比比較 4.3.3誤碼率量測比較 4.4系統設計概念 4.5 25Gb/s x4之TWDM-PON系統效能量測 4.5.1系統量測架構 4.5.2明滅比量測 4.5.3四波混頻影響量測 4.5.4光雜訊比量測 4.5.5誤碼率量測 4.5.6功率償付值模擬 4.5.7系統容忍度 4.5.8波長栓鎖機制設計與量測 第五章 結論 5.1成果 5.2未來研究方向與預期問題 參考文獻

    [1] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian and Y. Ma, “Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2),” Journal of Lightwave Technology, vol. 31, no. 4, pp. 587-593, 2013.
    [2] P. Vetter, “Next Generation Optical Access and Green Networks,” 38th European Conference and Exhibition on Optical Communications (ECOC), Amsterdam, Netherlands, pp. 1-42, 2012.
    [3] 40-Gigabit-capable passive optical networks (NG-PON2): General requirements, ITU-T G.989.1, 2013.
    [4] 許俸鳴,“基於直調雷射長距離分時分波多工被動光網路系統的啁啾效應控制技術”,國立台灣科技大學碩士論文,2014.
    [5] W. Jui-Pin, Y. Hung-Jung, W. Tsu-Hsiu, C. Yi-Jen, “40 Gb/s optical modulation using monolithically chain integration of semiconductor optical amplifiers (SOA) and electroabsorption modulators (EAM),” 22nd LEOS Annual Meeting Conference Proceedings, Belek-Antalya, Turkey, pp. 432-433, 2009.
    [6] A. Konczykowska, F. Jorge, C. Kazmierski, F. Blache, “EAM DFF-driver optimization for 40 Gb/s transmitter,” IEEE MTT-S International Microwave Symposium Digest, Long Beach, California, USA, pp. 12-17, 2005.
    [7] Characteristics of a dispersion-shifted, single-mode optical fibre and cable, ITU-T G.653, 2010.
    [8] Characteristics of a single-mode optical fibre and cable, ITU-T G.652, 2009.
    [9] M. C. Cheng, C. T. Tsai, Y. C. Chi, and G. R. Lin, "Direct QAM-OFDM Encoding of an L-band Master-to-Slave Injection-Locked WRC-FPLD Pair for 28 x 20 Gb/s DWDM-PON Transmission," Journal of Lightwave Technology, vol. 32, pp. 2981-2988, 2014.
    [10] Z. Hongguang, F. Shengmeng, M. Jiangwei, C. Wei, S. Xiaolu and Z. Li, “30km Downstream Transmission Using 4 x 25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, USA, pp. 1-3, 2014.
    [11] Z. F. Fan and D. Mahgerefteh, “Chirp Managed Lasers A New Technology for 10Gbps Optical Transmitters,” Optik & Photonik, vol. 2, pp. 39-41, 2007.
    [12] D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. F. Fan, K. McCallion and P. Tayebati, “Error-free 250km transmission in standard fiber using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550nm,” Electronics Letters, vol. 41, pp. 543-544, 2005.
    [13] Y. Yokoyama, T. Hatanaka, N. Oku, H. Tanaka, I. Kobayashi, H. Yamazaki and A. Suzuki, “10.709-Gb/s-300-km Transmission of PLC-based Chirp-Managed Laser Packaged in Pluggable Transceiver Without Any Optical or Electrical Dispersion Compensation,” 34th European Conference and Exhibition on Optical Communication, pp. 1-2, 2008.
    [14] L. L. Yi, Z. X. Li, M. H. Bi, W. Wei, and W. S. Hu, "Symmetric 40-Gb/s TWDM-PON With 39-dB Power Budget," IEEE Photonics Technology Letters, vol. 25, pp. 644-647, 2013.
    [15] Z. Zhou, M. H. Bi, S. L. Xiao, Y. H. Zhang, and W. S. Hu, "Experimental Demonstration of Symmetric 100-Gb/s DML-Based TWDM-PON System," IEEE Photonics Technology Letters, vol. 27, pp. 470-473, 2015.
    [16] J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” Journal of Lightwave Technology, vol. 7, pp. 568-573, 1989.
    [17] F. Koyama and K. Iga, “Frequency chirping in external modulators,” Journal of Lightwave Technology, vol. 6, pp. 87-93, 1988.
    [18] R. A. Linke, “Modulation induced transient chirping in single frequency lasers,” IEEE Journal of Quantum Electronics, vol. 21, pp. 593-597, 1985.
    [19] B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” Journal of Lightwave Technology, vol. 10, pp. 964-970, 1992.
    [20] S. Yamamoto, M. Kuwazuru, H. Wakabayashi and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” Journal of Lightwave Technology, vol. 5, pp. 1518-1524, 1987.
    [21] R. S. Tucker, “High-speed modulation of semiconductor laser,” Journal of Lightwave Technology, vol. 3, pp. 2572-2584, 1985.
    [22] I. Tomkos, I. Roudas, R. Hesse, N. Antoniades, A. Boskovic and R. Vodhanel, “Extraction of laser rate equations parameters for representative simulations of metropolitan-area transmission systems and networks,” Optics Communication, vol. 194, pp. 109-129, 2001.
    [23] P. J. Corvini and T. L. Koch, “Computer simulation of high bit rate optical fiber transmission using single frequency lasers,” Journal of Lightwave Technology, vol. 5, pp. 1591-1595, 1987.
    [24] Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-Managed Directly Modulated Laser (CML),” IEEE Photonics Technology Letters, vol. 18, pp. 385-387, 2006.
    [25] G. P. Agrawal, Fiber-optic communication systems, 3rd edition, Wiley, New-York, pp.47-49, 2002.
    [26] Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-Managed Directly Modulated Laser (CML),” IEEE Photonics Technology Letters, vol. 18, pp. 385-387, 2006.
    [27] A. Frenkel and C. Lin, “Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems,” Journal of Lightwave Technology, vol. 7, pp. 615-624, 1989.
    [28] Y. C. Chung, “Temperature tuned ZnS etalon filters for WDM systems,” IEEE Photonics Technology Letters, vol. 4, pp. 600-602, 1992.
    [29] G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 um in silicon etalon,” Electronics Letters, vol. 28, pp. 83-85, 1992.
    [30] P. Tayebati, P. D. Wang, D. Vakhshoori, and R. N. Sacks, “Widely tunable Fabry-Perot filter using Ga(Al)As/AlOx deformable mirrors,” IEEE Photonics Technology Letters, vol. 10, pp. 394-396, 1998.
    [31] C. K. Madsen and J. H. Zhao, Optical filter design and analysis: A Signal Processing Approach, John Wiley & Sons Inc., 1999.
    [32] 林淑娟,“高速直調雷射之傳輸性能改善及應用於WDM-PONs 系統之研究”,國立台灣科技大學博士論文,2008.
    [33] M. Born and E. Wolf, Principles of optics, 7th ed. Cambridge University Press, 1999.
    [34] Y. M. Karfaa, M. Ismail, A. F. M, S. Shaari and M. S. P, “Effects of Four-wave Mixing Crosstalk in WDM Networks on the Transmitted Optical Frequencies and Wavelengths of Channels for Various Fiber Types,” Asia-Pacific Conference on Applied Electromagnetics, Melaka, Malaysia, pp. 1-5, 2007.
    [35] Maxim Integrated, “Extinction Ratio and Power Penalty,” White Paper, Appl. Note HFAN-2.2.0, pp. 1-5, 2008.
    [36] S. P. Singh and N. Singh, “Nonlinear Effects in Optical Fibers: Origin, Management and Applications,” Progress In Electromagnetics Research, Beijing, China, pp. 249-275, 2007.

    QR CODE