簡易檢索 / 詳目顯示

研究生: 錢啟文
CI-WUN CIAN
論文名稱: 高速積層製造聚合物粉末列印件之後處理製程研究
Post-Processing Methods for Parts Fabricated on High Speed Additive Manufacturing using Powder based Polymer Material
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 林上智
Shang-Chih Lin
艾米爾
Aamer Nazir
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: 退火熱處理化學蒸氣處理多噴嘴燒熔技術積層製造PA12DMAC
外文關鍵詞: Annealing heat treatment, Chemical vapor treatment, Mutli jet fusion, Additive manufacturing, PA12, DMAC
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1積層製造 4 2.1.1快速燒結技術(High Speed Sintering, HSS) 5 2.1.2多噴嘴燒熔技術(Mutli Jet Fusion, MJF) 7 2.2殘留應力 8 2.2.1高分子結晶結構 8 2.2.1積層製造之殘留應力的成因 9 2.2.2量測殘留應力方法 11 2.2.3消除殘留應力之熱處理方法 12 2.3積層製造後處理技術 14 2.3.1塑膠材料後處理 14 2.3.2化學蒸氣處理 17 2.4 漢森溶解度參數(Hansen Solubility Parameters, HSP) 18 第三章 實驗設備與材料選用 20 3.1材料選用 20 3.1.1 PA12 20 3.1.2 二甲基乙醯胺(Dimethylacetamide, DMAC) 21 3.2實驗設備 23 3.2.1 HP Jet Fusion 4200 23 3.2.2熱處理設備 24 3.2.3化學蒸氣處理設備 25 3.3測量儀器 30 3.3.1多功能高解析X光繞射儀(X-Ray Diffraction, XRD) 30 3.3.2萬能試驗機 31 3.3.3邵氏硬度計 32 3.3.4表面粗糙度量測系統 33 3.3.5熱燈絲式電子顯微鏡 34 (Scanning Electron Microscope, SEM) 34 第四章 退火熱處理 35 4.1退火熱處理製程 35 4.1.1後處理試片準備 36 4.1.2未處理試片殘留應力量測 38 4.1.3差示掃描量熱法 (Differential scanning calorimetry, DSC) 39 4.1.4實驗流程 41 4.2試驗方法 42 4.2.1殘留應力量測 43 4.2.2拉伸試驗 44 4.2.3硬度試驗 46 4.2.4材料結晶度量測 47 4.2.5熱燈絲式電子顯微鏡 48 (Scaning Electron Microscope, SEM) 48 4.2.6表面粗糙度 51 第五章 化學蒸氣處理 52 5.1化學蒸氣處理製程 52 5.1.1化學蒸氣處理初始實驗架設 53 5.1.1.1化學蒸氣處理初始實驗結果 54 5.1.2差示掃描量熱法(Differential scanning calorimetry, DSC) 55 5.1.3實驗流程 57 5.2試驗方法 59 5.2.1化學蒸氣處理結果 59 5.2.2熱燈絲式電子顯微鏡 64 (Scaning Electron Microscope, SEM) 64 5.2.3表面粗糙度 68 5.2.4試片尺寸量測 70 5.2.5試片重量量測 71 5.2.6殘留應力量測 72 5.2.7拉伸試驗 73 5.2.8硬度試驗 75 5.3應用與實例 76 第六章 結論與未來展望 78 6.1結論 78 6.2未來展望 80 參考文獻 81

    [1]Crane, N.B., et al., Impact of chemical finishing on laser-sintered nylon 12 materials. Additive Manufacturing, 2017. 13: p. 149-155.
    [2]Hopkinson, N. and E. Poonjolai, High Speed Sintering-Early Research into a New Rapid Manufacturing Process. Solid Freeform Fabrication Symposium, 2004.
    [3]Thomas, H.R., N. Hopkinson, and P. Erasenthiran. High speed sintering–continuing research into a new rapid manufacturing process. in 2006 International Solid Freeform Fabrication Symposium. 2006.
    [4]P.Hewlett, HP Multi Jet Fusion technology-A disruptive 3D printing technology for a new era of manufacturing. 2014.
    [5]Schaller, C., Crystallinity in Polymers.
    [6]巫承德, 剪切作用對聚丙烯冷卻過程中的高階結構形成之影響. 2004.
    [7]Callister, W.D., Materials Science and Engineering: An Introduction. 2002.
    [8]Mercelis, P. and J.P. Kruth, Residual stresses in selective laser sintering and selective laser melting. Rapid prototyping journal, 2006.
    [9]Bartlett, J.L. and X. Li, An overview of residual stresses in metal powder bed fusion. Additive Manufacturing, 2019. 27: p. 131-149.
    [10]Li, C., et al., Residual stress in metal additive manufacturing. Procedia Cirp, 2018. 71: p. 348-353.
    [11]Schajer, G.S., Practical residual stress measurement methods. 2013: John Wiley & Sons.
    [12]Bunaciu, A.A., E.G. UdriŞTioiu, and H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 2015. 45(4): p. 289-299.
    [13]吳佩芳、王家祥、吳威德、賀克勤、吳典黻、楊智綱、陳裕德, 熱處理條件對銲後SAE4130鋼板殘留應力量測與消除效果之比較. 2012.

    [14]Mishurova, T., et al., An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials, 2017. 10(4): p. 348.
    [15]Yadroitsava, I. and I. Yadroitsev, Evaluation of residual stress in selective laser melting of 316L steel. Additive Manufacturing (Pro‑AM 2014), 2014. 278: p. 283.
    [16]COMPONENT PARTS OF AN X-RAY DIFFRACTOMETER. Available from: https://xrd.co/component-parts-x-ray-diffractometer/.
    [17]Vona, M.L.D., Annealing of Polymer Membranes. 2014.
    [18]韋仁旌 and 徐瑞坤, 以熱處理方式消除射出成型製品殘留應力之研究. 2007.
    [19]黃于修 and 徐瑞坤, 塑膠射出成型拉伸試片退火處理後拉伸強度之探討. 2008.
    [20]Bhandari, S., R.A. Lopez-Anido, and D.J. Gardner, Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing, 2019. 30: p. 100922.
    [21] Wach, R.A., P. Wolszczak, and A. Adamus‐Wlodarczyk, Enhancement of mechanical properties of FDM‐PLA parts via thermal annealing. Macromolecular Materials and Engineering, 2018. 303(9): p. 1800169.
    [22]Kočí, J., How to improve your 3D prints with annealing. 2019.
    [23]INC., P.T., Redefining PolyJet Support Removal with Automation Whitepaper.
    [24]INC., P.T., Eliminating Manual Surface Finishing For Multi Jet Fusion (MJF) 3D Printed Solutions Whitepaper.
    [25]BrittLiv, How to Smooth PLA 3D Prints. 2019.
    [26]Kočí, J., Improve your 3D prints with chemical smoothing. 2020.
    [27]Sato, S., et al., Effects of various liquid organic solvents on solvent‐induced crystallization of amorphous poly (lactic acid) film. Journal of Applied Polymer Science, 2013. 129(3): p. 1607-1617.
    [28]Gharagheizi, F., M. Sattari, and M.T. Angaji, Effect of calculation method on values of Hansen solubility parameters of polymers. Polymer Bulletin, 2006. 57(3): p. 377-384.
    [29]HP Development Company, L.P., HP 3D High Reusability PA 12. 2017.
    [30]HP Development Company, L.P., HP Jet Fusion 4200 3D Printing Solution. 2020.
    [31] GmbH, B., Drying and heating chambers.
    [32] Blaine, R.L., Thermal applications note Polymer Heats of Fusion.
    [33]Touris, A., et al., Effect of molecular weight and hydration on the tensile properties of polyamide 12. Results in Materials, 2020. 8: p. 100149.

    無法下載圖示 全文公開日期 2026/07/26 (校內網路)
    全文公開日期 2026/07/26 (校外網路)
    全文公開日期 2026/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE