簡易檢索 / 詳目顯示

研究生: 林翊銓
Yi-Quan Lin
論文名稱: 氣體霧化法製備Al0.5CoCrFeNi2 高熵合金粉末之性質研究
Study of the Properties on Gas-Atomized Al0.5CoCrFeNi2 High-Entropy Alloy Powders
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 陳智
Chih Chen
顏鴻威
Hung-Wei Yen
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 高熵合金氣體霧化法Al0.5CoCrFeNi2退火熱處理相變化
外文關鍵詞: High-entropy alloys, Gas atomization, Al0.5CoCrFeNi2, Annealing, Phase transformation
相關次數: 點閱:241下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用氣體霧化法製備Al0.5CoCrFeNi2之高熵合金粉末,改善常見之電弧熔煉或感應熔煉所製備之塊材須反覆重熔問題,氣體霧化法與其他製程相比,製備效率較快,可使元素成份均勻分佈,準確控制化學組成,且可保持高溫初始相之晶體結構,研究目的主要探討退火熱處理對於微觀結構、相變化與機械性質之影響,再進一步與商用常見之Incoloy 825進行高溫氧化及耐腐蝕性之比較;由於氣體霧化法快速冷卻之製程,使此合金擁有高溫初始相FCC結構,與文獻計算模擬產生之相圖所顯示高溫初始相FCC吻合,藉由連續升溫之In-situ XRD分析結果顯示,從室溫加熱至1200℃皆無相變化產生,然而透過DSC結果發現溫度於1000℃時發生相變化,表示短時間溫度改變對於此合金產生相變化之驅動力較低,因此利用退火熱處理以逐漸增加持溫時間使其產生相變化,進而控制析出相之比例,從相異退火時間之XRD顯示,當退火48小時才有繞射峰產生,藉由SEM及EDS發現經退火熱處理後,從此合金之晶界析出富含Cr之析出物,隨退火時間增加,析出物成核成長所佔據之面積漸增,直至48小時析出物才於XRD中顯示出繞射峰,再利用EBSD進行結晶取向之相鑑定,發現此合金相變化前之FCC相結晶排列傾向Ni3Al晶體結構,經退火發生相變化後,FCC相之結晶排列仍為Ni3Al晶體結構,而析出相之結晶排列則傾向NiAl及Fe之BCC晶體結構,而退火後整體平均硬度為4.22 GPa與未退火之硬度值4.25 GPa接近,並無因為退火造成機械性質下降;再與Incoloy 825進行高溫氧化及耐腐蝕性之比較,將此合金於鹽酸環境中進行動電位極化,發現測量值Ecorr為 -212 mV、 Icorr為1.5 μA/cm2,而Incoloy 825測量值Ecorr為 -239 mV、 Icorr為5.16 μA/cm2,此合金於酸性環境中具較出色之耐腐蝕性,而高溫氧化行為則置於900℃空氣氛圍中進行,發現此合金之氧化速率明顯比Incoloy 825緩慢,表示此合金之高溫抗氧化能力優於Incoloy 825。


    In this study, Al0.5CoCrFeNi2 high-entropy alloy powders were prepared by gas atomization process to overcome the problems of bulk prepared by arc or induction melting. Compared with other processes, this process has better efficiency to obtain the powders with uniform elements distribution and precise chemical composition. Moreover, it can also preserve the high temperature phase. The purpose of this study was to discuss the effect of annealing treatment on the microstructure, phase transformation and mechanical property. In addition, this alloy was compared with the Incoloy 825 on high-temperature oxidation behavior and corrosion resistance properties. Due to the rapid cooling rate of gas atomization, this alloy had a high-temperature initial FCC phase. The In-situ XRD results indicated that phase transform did not occur from RT. to 1200℃. However, the DSC results indicated the phase transformation was at 1000℃. Therefore, annealing treatment was adjusted to gradually increase the annealing time to make phase transformation. From the XRD of the different annealing times, diffraction peaks began to generate after 48 hours. After annealing process, With SEM and EDS analysis the results showed the Cr-rich precipitated from the grain boundaries of this alloy, and the longer the annealing time, the more the precipitates. Then, EBSD was used to identify the crystal orientation of the phase, it was found that the FCC phase tended to form the Ni3Al crystal structure before the phase transformation. After the phase transformation during annealing, the crystal arrangement of FCC phase was still the Ni3Al, and the precipitate phase tended to form the BCC crystal structure of NiAl and Fe. The average hardness was 4.22 GPa after annealing treatment, which was close to the hardness value of 4.25 GPa before heat treatment. Compared with Incoloy 825 on high temperature oxidation and corrosion resistance, the alloy obtained Ecorr = -212 mV and Icorr = 1.5 μA/cm2 while Incoloy 825 obtained Ecorr = -239 mV and Icorr = 5.16 μA/cm2, the alloy had excellent corrosion resistance in acid environment. The high temperature oxidation experiment was sequentially conducted in air furnace at 900℃. It was found that the oxidation rate of the alloy was significantly slower than Incoloy 825, indicating that the high temperature oxidation resistance of the alloy was outstanding.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2.1 超合金 3 2.2 高熵合金 5 2.2.1 高熵合金之概念及背景 5 2.2.2 高熵合金之特性 6 2.2.3 高熵合金之應用 10 2.3 AlxCoCrFeNiy高熵合金系統 11 2.4 氣體霧化法 18 2.5 總結 20 第三章 實驗方法 21 3.1 實驗流程 21 3.1.1 粉末之熱處理參數 21 3.1.2 粉末試片製備 23 3.1.3 塊材試片製備 23 3.2 電化學測量分析 23 3.2.1 實驗設備及原理 23 3.2.2 實驗參數 25 3.3 氧化流程及參數 26 3.4 實驗分析儀器 27 3.4.1 光學顯微鏡(Optical Microscope, OM) 27 3.4.2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 27 3.4.3 能量分散光譜儀(Energy Dispersive Analysis, EDS) 28 3.4.4 X射線繞射分析儀(X-Ray Diffraction, XRD) 28 3.4.5 電子背向散射繞射分析儀(Electron Backscatter Diffraction, EBSD) 29 3.4.6 奈米壓痕儀(Nanoindenter) 29 第四章 結果與討論 30 4.1 氣體霧化法製備之高熵合金粉末分析 30 4.2 退火對於高熵合金粉末之影響 33 4.2.1 微觀結構演變 33 4.2.2 化學組成分析 36 4.3 高熵合金粉末之晶體結構分析 40 4.3.1 高熵合金粉末之相變化 40 4.3.2 高熵合金粉末之結晶取向 43 4.4 高熵合金粉末之機械性質 48 4.5 動電位極化分析 51 4.6 氧化行為分析 53 第五章 結論 59 參考文獻 60

    [1] M. H. Tsai, J. W. Yeh, "High-entropy alloys: a critical review", Materials Research Letters, vol. 2, 107-123, 2014.
    [2] M. C. Gao, J. W. Yeh, P. K. Liaw, Y. Zhang, "High-entropy alloys", Springer, 2016.
    [3] M. C. Gao, "Progress in high-entropy alloys", JOM, vol. 67, 2251-2253, 2015.
    [4] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, "Microstructures and properties of high-entropy alloys", Progress in Materials vol. 61, 1-93, 2014.
    [5] K. H. Huang, J. W. Yeh, "A study on the multicomponent alloy systems containing equal-mole elements", National Tsing Hua University, Hsinchu, 1996.
    [6] C. Zhang, F. Zhang, H. Diao, M. C. Gao, Z. Tang, J. D. Poplawsky, P. K. Liaw, "Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys", Materials and Design, vol. 109, 425-433, 2016.
    [7] S. G. Ma, P. K. Liaw, M. C. Gao, J. W. Qiao, Z. H. Wang, Y. Zhang, "Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer", Journal of Alloys and Compounds, vol. 604, 331-339, 2014.
    [8] W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai, J. W. Yeh, "Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys", Intermetallics, vol. 26, 44-51, 2012.
    [9] A. Munitz, S. Salhov, S. Hayun, N. Frage, "Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy", Journal of Alloys and Compounds, vol. 683, 221-230, 2016.
    [10] Y. Zhang, B. Zhang, K. Li, G. L. Zhao, S. M. Guo, "Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites", Journal of Alloys and Compounds, vol. 734, 220-228, 2018.
    [11] R. X. Li, P. K. Liaw, Y. Zhang, "Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides", Materials Science & Engineering A, vol. 707, 668-673, 2017.
    [12] J. T. Liang, K. C. Cheng, S. H. Chen, J. H. Chen, S. Stadler, C. L. Li, C. H. Hsueh, "Study on the continuous phase evolution and physical properties of gas-atomized high-entropy alloy powders", Materials Research Express, vol. 7, 026545, 2020.
    [13] K. C. Cheng, J. H. Chen, S. Stadler, S. H. Chen, "Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process", Applied Surface Science, vol. 478, 478-486, 2019.
    [14] J. T. Liang, K. C. Cheng, S. H. Chen, "Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders", Journal of Alloys and Compounds, vol. 803, 484-490, 2019.
    [15] C. T. Sims, N. S. Stoloff, W. C. Hagel, "Superalloys II", John Wiley & Sons, 1987.
    [16] M. J. Donachie, "Superalloys source book", ASM, 1984.
    [17] M. J. Donachie, S. J. Donachie, "Superalloys: a technical guide", ASM, 2002.
    [18] 王會陽, 安雲岐, 李承宇, 晁兵, 倪雅, 劉國彬, 李萍, "鎳基高溫合金材料的研究進展" , 材料導報, vol. 25, 482-486, 2011.
    [19] A. Hernas, J. Dobrzański, "Durability and destruction of boilers and steam turbine elements", Publishing House of the Silesian University of Technology, Gliwice, 43-56, 2003.
    [20] W. Betteridge, S. W. K. Shaw, "Development of superalloys", Materials Science and Technology, vol. 3, 682-694, 1987.
    [21] J. H. Westbrook, "Chapter 48 superalloys (Ni-base) and dislocations — an introduction", Dislocations in Solids, vol. 10, 1-26, 1996.
    [22] M. F. Ashby, "Materials selection in mechanical design 4th Edit", Butterworth Heinemann, 2011
    [23] M. Kutz, "Handbook of materials selection" , John Wiley & Sons, 2002.
    [24] 李名言, "鎳基合金材質特性介紹", 中工高雄會刊, vol. 21, 2013.
    [25] J. W. Yeh,S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes", vol. 6, 299-303, 2004.
    [26] J. W. Yeh, "Recent progress in high entropy alloys", Annales De Chimie – Science des Materiaux, vol. 31, 633-648, 2006.
    [27] 葉均蔚, "高熵合金的發展", 華岡工程學報, no. 27, 1-18, 2011.
    [28] P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinšek, "Discovery of a superconducting high-entropy alloy", Physical Review Letters, vol. 113, 107001, 2014.
    [29] N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, "Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy", Materials Letters, vol. 142, 153-155, 2015.
    [30] O. N. Senkov, S. V. Senkova, C. Woodward, D. B. Miracle, "Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis", Acta Materialia, vol. 61, 1545-1557, 2013.
    [31] X. F. Wang, Y. Zhang, Y. Qiao, G. L. Chen, "Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys", Intermetallics, vol. 15, 357-362, 2007.
    [32] K. Youssef, S. R. Roberto, "Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of Italia table grapes", Materials Research Letters, vol. 87, 95-102, 2014.
    [33] P. Ding, A. Mao, X. Zhang, X. Jin, B. Wang, M. Liu, "Preparation, characterization and properties of multicomponent AlCoCrFeNi2. 1 powder by gas atomization method", Journal of Alloys and Compounds, vol. 721, 609-614, 2017.
    [34] Y. F. Zhang, C. W. Su, H. Xia, P. F. Xiao, "Advanced materials and processing 2010", World Scientific, 2011.
    [35] D. L. Zhang, "Processing of advanced materials using high-energy mechanical milling", Progress in Materials Sciencevol, vol. 49, 537-560, 2004.
    [36] C. B. Basak, M. Krishnan, R. Kumar, K. K. Abdullah, S. Anantharaman, "Characterization and process evaluation of Ni–Ti–Fe shape memory alloy macro-spheres directly fabricated via rotating electrode process", Journal of Alloys and Compounds, vol. 597, 15-20, 2014.
    [37] S. Mohanty,T. N. Maity, S. Mukhopadhyay, S. Sarkar, N. P. Gurao, S. Bhowmick, K. Biswas, "Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties", Materials Science and Engineering: A, vol. 679, 299-313, 2017.
    [38] L. M. Wang, C. C. Chen, J. W. Yeh, S. T. Ke, "The microstructure and strengthening mechanism of thermal spray coating NixCo0. 6Fe0. 2CrySizAlTi0. 2 high-entropy alloys", Materials Chemistry and Physics, vol. 126, 880-885, 2011.
    [39] C. Si, X. Tang, X. Zhang, J. Wang, W. Wu, "Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process", Materials & Design, vol. 118, 66-74, 2017.
    [40] P. F. Zhou, D. H. Xiao, Z. Wu, X. Q. Ou, "Al0. 5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders", Materials Science and Engineering: A, vol. 739, 86-89, 2019.
    [41] S. C. Zhou, P. Zhang, Y. F. Xue, F. C. Wang, L. Wang, T. Q. Cao, Z. Tan, B. Y. Cheng, B. P. Wang, "Microstructure evolution of Al0. 6CoCrFeNi high entropy alloy powder prepared by high pressure gas atomization", Transactions of Nonferrous Metals Society of China, vol. 28, 939-945, 2018.
    [42] D. A. Jones, "Principles and prevention of corrosion", Macmillan, 1992.
    [43] 胡啟章, "電化學原理與方法", 五南圖書出版股份有限公司, 2002.
    [44] 柯賢文, "腐蝕及其防制", 全華科技圖書股份有限公司, 2006.
    [45] M. Yoshizawa, H. Seki, K. Ikeda, K. Okuno, M. Saito, K. Shigematsu, "Magnetic field effects on electrical resistivity and ferromagnetism in Ni3Al alloys", Journal of the Physical Society of Japan, vol. 61, 3313-3321, 1992.
    [46] Y. Hara, R. C. O'Handley, N. J. Grant, "Magnetic properties of Mn1−xNixAl", Journal of Magnetism and Magnetic Materials, vol. 54-57, 1077-1078, 1986
    [47] J. J. Bara, A. T. Pȩdziwiatr, "Investigations of crystal and magnetic properties of Dy-Fe intermetallic compounds", Journal of Magnetism and Magnetic Materials, vol. 27, 168-174, 1982.
    [48] F. T. Parker, H. Oesterreicher, E. Fullerton, "Mössbauer effect determination of chemical segregation in sputtered Co‐Cr films", Journal of Applied Physics, vol. 66, 5988 , 1989.
    [49] W. Kai, F. P. Cheng, F. C. Chien, Y. R. Lin, D. Chen, J. J. Kai, C. T. Liu, C. J. Wang, "The oxidation behavior of a Ni2FeCoCrAl0.5 high-entropy superalloy in O2-containing environments", Corrosion Science, vol. 158, 108093, 2019.
    [50] 吳芫豪, 陳偉昇, 開物, 開執, "Incoloy-800H超合金之高溫氧化行為研究", 防蝕工程期刊, vol. 27, 1-8, 2013.
    [51] P. V. Mohan Rao, K. Satyanarayana Murthy, S. V. Suryanarayana, "High temperature thermal expansion characteristics of Ni3A1 alloys", Journal of Alloys and Compounds, vol. 190, 33-35, 1993.
    [52] 魏淑宜, "以電化學方法研究Co/Cu(111)薄膜結構與磁特性", 臺灣師範大學物理學系, 2007.
    [53] 臺灣科技大學機械工程系所網站
    [54] 臺灣科技大學研究發展處貴重儀器中心網站
    [55] Oxford Instruments Website

    QR CODE