簡易檢索 / 詳目顯示

研究生: 邵柏崴
Bo-Wei Shao
論文名稱: 用於抑制噪音之電感耦合壓控震盪器與超寬頻之雙頻發送機設計
Design of Noise-Suppressed Inductor-Coupled Voltage-Controlled Oscillator and Ultra-Wideband Dual-band Transmitter
指導教授: 王煥宗
Huan-Chun Wang
宋峻宇
Jiun-Yu Sung
口試委員: 王煥宗
Huan-Chun Wang
宋峻宇
Jiun-Yu Sung
張勝良
Sheng-Lyang Jang
徐茂修
Mao-Hsiu Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 139
中文關鍵詞: 壓控振盪器發射機超寬帶8字形變壓器功率放大器
外文關鍵詞: Voltage Controlled Oscillator, Transmitter, Ultra-wideband, 8-shaped transformer, power amplifier
相關次數: 點閱:259下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在RF射頻收發機中,頻率合成器扮演著重要的角色,其內部涵蓋了發射機(Tx) 、接收機(Rx) 、壓控振盪器(VCO)、相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、除頻器(FD)與倍頻器(FM) 。此外,而頻率合成器還可應用在頻率偏移調變(FSK)。因為要追求低相位雜訊、低功耗與寬調頻範圍的壓控震盪器(VCO)與低複雜性、高速運行的超寬帶(UWB)之發射機(Tx)特性,所以本篇論文呈現出各種高性能的壓控震盪器(VCO)和超寬帶(UWB)之發射機(Tx)的設計。

    第一部分採用了一種使用8字形三路變壓器的 LC-tank 型 CMOS NP 交叉耦合壓控振盪器 (VCO)。VCO使用一個8字形三路變壓器,用於提升P型MOSFET和N型MOSFET源電壓擺幅以實現低功耗。三路變壓器中其中一個是由兩個8字線圈串聯而成的雙8字形電感,並與第二和第三個單圈8字形電感交錯以獲得高耦合係數。 2:1:1變壓器拓撲實現對稱變壓器佈局,8字形變壓器產生的兩個波瓣輻射遠場磁場用以抑制磁場輻射。本部分由台積電0.18μm CMOS工藝所製作,VCO晶片面積為0.776×0.82mm2。測得的 VCO 振盪頻率為 4.72 GHz,品質因數 (FOM) 為 -185.23 dBc/Hz。

    第二部分設計採用8字形三路變壓器設計了LC-tank型CMOS之NP交叉耦合壓控振盪器(VCO)。 VCO 採用8字形三路變壓器和鬆散耦合源退化電感來優化 VCO 性能。三路變壓器中其中一個是由兩個8字線圈串聯而成的雙8字形電感,並與第二和第三個單圈8字形電感交錯以獲得緊密的三組電感結構以節省面積。變壓器拓撲實現對稱變壓器佈局,8字形變壓器其透過兩個波瓣輻射遠場磁場以抑制磁場輻射。8字形變壓器也減少了注入之拉力。本部分由台積電 0.18μm CMOS工藝所製作,VCO晶片面積為0.889×0.855mm2。測得的 VCO 振盪頻率為 3.8 GHz。

    第三部分設計採用新型8字形變壓器架構的超寬帶發射機。此發射機的新型8字形變壓器,由兩個2瓣8字形電感組成,分別為2:1的O形電感和1:2的O形電感串聯組合而成。其性能和功能在開關鍵控 (OOK) 超寬帶 (UWB) 發射器中得到驗證。UWB發射器由台積電 0.18μm CMOS工藝所製作,測得發射器的晶片面積為1.110×0.963 mm2。此UWB 發射機專為 UWB 通信應用而設計,工作頻率為 3.38 GHz。

    第四部分設計著重介紹了CMOS雙頻超寬帶 (UWB) 發射機的設計,其特點是複雜度低、速度快,並採用開關鍵控結構。在發射機中,設計了一種採用推拉積分技術的差動窄三角脈衝波發射器,並提出了一種新型雙頻帶互補開關模式開關壓控振盪器(VCO)。VCO 使用耦合變壓器來驅動輸出負載。其載波頻率為5.4和6.4 GHz。發射器設計由台積電 0.18μm CMOS工藝所製作,其晶片面積為1.15×1.135 mm2。此發射機的三個電感通過串聯電壓組合的方法配置為一個三路變壓器。其中輸出負載為8字形電感,而兩個壓控振盪器電感和8字形電感組成一個三路變壓器。

    最後部分設計介紹了一個採用線性化技術的兩級功率放大器(PA)。放大器第二級的採用接近class-A的工作方式,從而增強線性度,其由台積電 0.18μm CMOS工藝所製作,且所有匹配線路都集成在晶片上。為了滿足線性度規格,PA 在回退功率區域中運行,導致效率有所下降。此架構選擇共源放大器而不是疊接或堆疊放大器是因為其卓越的線性度,並且在 PA 的設計中得到了利用。


    In the RF transceiver, the frequency synthesizer plays an important role, its blocks include Transmitter (Tx), Receiver (Rx), Voltage Controlled Oscillator (VCO), Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF), Frequency Divider (FD), Frequency Multiplier (FM). Additionally, the frequency synthesizer can also be utilized as a demodulator for Frequency Shift Keying (FSK) signals. This thesis focuses on the design of a high-performance Voltage Controlled Oscillator (VCO) and Ultra-wideband (UWB) transmitter (Tx), with an emphasis on achieving low phase noise, low power consumption, wide tuning range for the VCO, and low complexity, high-speed operation for the UWB transmitter.

    The first part presents the design of an LC-type CMOS NP-cross-coupled voltage-controlled oscillator (VCO). The VCO uses an 8-shaped trifilar transformer used to enhance the voltage swing of the P-Channel MOSFET and N-Channel MOSFET source, achieving low-power operation. One inductor of the trifilar transformer consists of two serially connected 8-shaped coils, while the second and third transformers are single-loop 8-shaped coils arranged in an interleaved manner to achieve a high coupling coefficient. The symmetric transformer layout is realized using a 2:1:1 transformer topology, and the two lobes of the radiated far-field magnetic field generated by the 8-shaped transformer are utilized to suppress magnetic field radiation. This part presents a VCO fabricated using TSMC 0.18μm CMOS process, with a chip area of 0.776×0.82mm2. The measured VCO oscillation frequency is 4.72 GHz, and the figure of merit (FOM) is -185.23 dBc/Hz.

    The second part introduces the design of an LC-type CMOS NP cross-coupled voltage-controlled oscillator (VCO). The VCO utilizes an 8-shaped trifilar transformer with loosely coupling source degenerated inductors to optimize the VCO performance. One inductor of the trifilar transformer consists of two serially connected 8-shaped coils, while the second and third transformers are single-loop 8-shaped coils interleaved to achieve a compact three-group inductor structure for area savings. The implementation of the transformer topology allows for a balanced transformer arrangement, while the 8-shaped transformers utilize two lobes of radiated far-field magnetic field, resulting in mitigated magnetic field radiation. The 8-shaped transformer also reduces the injection pulling. This part presents a VCO fabricated using TSMC 0.18μm CMOS process, with a chip area of 0.889×0.855mm2. The measured VCO oscillation frequency is 3.8 GHz.

    The third part introduces a new 8-shaped transformer used in Ultra-Wideband Transmitter. The transmitter utilizes a new 8-shaped transformer, which consists of a series combination of a 2:1 O-shaped transformer and a 1:2 O-shaped transformer. The transformer is formed by two 2-lobe 8-shaped inductors. Its performance and functionality are demonstrated in an on-off keying (OOK) ultra-wideband (UWB) transmitter. The UWB transmitter is specifically designed for applications in UWB communications and operates at a frequency of 3.38 GHz. The design of the UWB transmitter is fabricated using the TSMC 0.18μm CMOS process, and the resulting die area of the transmitter is measured to be 1.110×0.963mm2.

    The fourth part focuses on the design of a CMOS Dual-band UWB transmitter, characterized by its low complexity and high speed. The transmitter incorporates an on-off keying structure. Within the transmitter, a differential narrow triangular pulse generator was meticulously designed using a push-and-pull integrating technique. Additionally, a novel dual-band complementary switch-mode on-off voltage-controlled oscillator (VCO) was proposed, with the carrier frequencies set at 5.4 GHz and 6.4 GHz. The implementation of the transmitter design was achieved using a 0.18μm CMOS process, while the die area is 1.15 ×1.135 mm2. The VCO uses a transformer balun to drive the output load. Three inductors are configured as one trifilar by the series-voltage combining approach. The output load is an 8-shape inductor. The two VCO inductors and the 8-shaped inductor form a trifilar transformer.

    The final part presents a 2-stage power amplifier that incorporates a linearization technique. The second stage of the amplifier operates close to class-A operation, which enhances linearity. The power amplifier is fabricated using a 0.18 μm CMOS process, with all matching networks integrated into the chip. To meet the linearity specifications, the PA operates in a backed-off power region, resulting in some efficiency degradation. The choice of a common-source amplifier over a cascode or stacked amplifier is motivated by its superior linearity and is utilized in the design of the PA.

    摘要 I Abstract III 誌謝 VI Table of Contents VII List of Figures IX List of Tables XVIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 Principles and Design Considerations of Voltage-Controlled Oscillators 7 2.1 Introduction 7 2.2 The Oscillators Theory 9 2.2.1 Feedback Oscillators (Two ports) 10 2.2.2 Negative Resistance and Resonator (One port) 12 2.3 Category of Oscillators 15 2.3.1 Ring Oscillator 15 2.3.2 LC-Tank Oscillator 19 2.4 Design Concepts of Voltage-Controlled Oscillator 24 2.4.1 Parameters of a Voltage-Controlled Oscillator 25 2.4.2 Phase Noise 27 2.4.3 Quality Factor 33 Chapter 3 Implementation of 2:1:1 8-shaped Trifilar in a Coupling Noise Suppression CMOS VCO 35 3.1 Introduction 35 3.2 Circuit Design 37 3.3 Experimental 42 Chapter 4 VCO with Low-Coupling 2:1:1 8-shaped Trifilar for Coupling Noise Suppression 47 4.1 Introduction 47 4.2 Circuit Design 49 4.3 Experimental 55 Chapter 5 A New 8-shaped Transformer Used in Ultra-Wideband Transmitter 60 5.1 Introduction 60 5.2 Circuit Design 62 5.3 Experiment of the UWB Transmitter 68 Chapter 6 CMOS Dual-band UWB Transmitter 71 6.1 Introduction 71 6.2 Circuit Design 73 6.3 Experimental 80 Chapter 7 High Linear CMOS Power Amplifier 100 7.1 Introduction 100 7.2 Circuit Design 102 7.3 Experimental 104 Chapter 8 Conclusions 107 References 110

    [1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
    [2] N. M. Nguyen and R. G. Meyer, "Start-up and frequency stability in high-frequency oscillators," in IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 810-820, May 1992, doi: 10.1109/4.133172.
    [3] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
    [4] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [5] W. Zou, X. Zou, D. Ren, K. Zhang, D. Liu, and Z. Ren, “2.49-4.91 GHz wideband VCO with optimised 8-shaped inductor,” Electron. Lett., vol. 55, no. 1, pp. 55–57, Jan. 2019.
    [6] N. M. Neihart, D. J. Allstot, M. Miller and P. Rakers, "Twisted transformers for low coupling RF and mixed signal applications," 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 2009, pp. 429-432, doi: 10.1109/ISCAS.2009.5117777.
    [7] P. -Y. Wang et al., "A low phase-noise class-C VCO using novel 8-shaped transformer," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015, pp. 886-889, doi: 10.1109/ISCAS.2015.7168776.
    [8] A. Poon, A. Chang, H. Samavati and S. S. Wong, "Reduction of Inductive Crosstalk Using Quadrupole Inductors," in IEEE Journal of Solid-State Circuits, vol. 44, no. 6, pp. 1756-1764, June 2009, doi: 10.1109/JSSC.2009.2020525.
    [9] Mahmoud, A., Fanori, L., Mattsson, T. et al. "A 2.8-to-5.8 GHz harmonic VCO based on an 8-shaped inductor in a 28 nm UTBB FD-SOI CMOS process, " Analog Integr Circ Sig Process 88, 391–399 (2016).
    [10] H.-C. Lee, S.–L. Jang, H.‐W. Liu, and L. Y. Chen,” Divide-by-2 injection-locked frequency divider exploiting an 8-shaped Inductor,” Microw Opt Technol Lett. vol. 63, no. 4, April 2021 pp.1024-1028.
    [11] H.-C. Lee, S.-L. Jang, T.-Y. Chen, M.-H. Juang, "Design of twisted inductor used in ring voltage-controlled-oscillator," IEDMS 2022. Puli, Nantou, Taiwan, from Oct. 27 to Oct. 28, 2022.
    [12] S. -L. Jang and C. -F. Lee, "A Low Voltage and Power LC VCO Implemented With Dynamic Threshold Voltage MOSFETS," in IEEE Microwave and Wireless Components Letters, vol. 17, no. 5, pp. 376-378, May 2007, doi: 10.1109/LMWC.2007.895720.
    [13] C. Meng, J.-S. Syu, S.-C. Tseng, Y.-W. Chang and G.-W. Huang, "Low-phase-noise SiGe HBT VCOs using trifilar-transformer feedback," 2008 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 2008, pp. 249-252, doi: 10.1109/MWSYM.2008.4633150.
    [14] J. -S. Syu, C. Meng and G. -W. Huang, "SiGe HBT quadrature VCO utilizing trifilar transformers," 2008 IEEE Asian Solid-State Circuits Conference, Fukuoka, Japan, 2008, pp. 465-468, doi: 10.1109/ASSCC.2008.4708828.
    [15] K. -W. Cheng and Y. -R. Tseng, "5 GHz CMOS Quadrature VCO Using Trifilar-Transformer-Coupling Technology," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 9, pp. 717-719, Sept. 2016, doi: 10.1109/LMWC.2016.2598225.
    [16] H. -C. Lee, S. -L. Jang and R. -X. Yang, "Low Power CMOS VCO Using an 8-shaped Transformer," 2023 IEEE 23rd Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Las Vegas, NV, USA, 2023, pp. 19-21, doi: 10.1109/SiRF56960.2023.10046255.
    H. Kim, S. Ryu, Y. Chung, J. Choi, and B. Kim, “A low phase-noise
    CMOS VCO with harmonic tuned LC tank,” IEEE Trans. Microw. Theory
    Techn., vol. 54, no. 7, pp. 2917–2923, Jul. 2006
    [17] H. Kim, W. Kim, S. Ryu, S. Kang, B. -H. Park and B. Kim, "A Low Phase Noise LC VCO in 65 nm CMOS Process Using Rectangular Switching Technique," in IEEE Microwave and Wireless Components Letters, vol. 17, no. 8, pp. 610-612, Aug. 2007, doi: 10.1109/LMWC.2007.901795.
    [18] Q. Liu, J. Sun, T. Yoshimasu, S. Kurachi and N. Itoh, "15 GHz-band low phase-noise LC-VCO with second harmonic tunable filtering technique," 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 2009, pp. 1592-1595, doi: 10.1109/PIMRC.2009.5450190.
    [19] N. J. Oh, and S. G. Lee, “11-GHz CMOS differential VCO with back-gate transformer feedback,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 733–735, Dec. 2005.
    [20] J. Yang, C. -Y. Kim, D. -W. Kim and S. Hong, "Design of a 24-GHz CMOS VCO With an Asymmetric-Width Transformer," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 3, pp. 173-177, March 2010, doi: 10.1109/TCSII.2010.2043381.
    [21] A. Hajimiri and T. H. Lee, "Design issues in CMOS differential LC oscillators," in IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999, doi: 10.1109/4.760384.
    [22] M. Garampazzi, P. M. Mendes, N. Codega, D. Manstretta and R. Castello, "Analysis and Design of a 195.6 dBc/Hz Peak FoM P-N Class-B Oscillator With Transformer-Based Tail Filtering," in IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1657-1668, July 2015, doi: 10.1109/JSSC.2015.2413851.
    [23] H. -C. Lee, S. -L. Jang and R. -X. Yang, "Low Power CMOS VCO Using an 8-shaped Transformer," 2023 IEEE 23rd Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Las Vegas, NV, USA, 2023, pp. 19-21, doi: 10.1109/SiRF56960.2023.10046255.
    [24] J. -H. Tsai and J. -P. Chou, "A K-band low-power CMOS transformer-feedback VCO," 2013 IEEE Radio and Wireless Symposium, Austin, TX, USA, 2013, pp. 295-297, doi: 10.1109/RWS.2013.6486719.
    [25] C. -K. Hsieh, Kun-Yao Kao and K. -Y. Lin, "An ultra-low-power CMOS complementary VCO using three-coil transformer feedback," 2009 IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, USA, 2009, pp. 91-94, doi: 10.1109/RFIC.2009.5135497.
    [26] C. Y. Cha, H. C. Choi, H. T. Kim, and S. G. Lee, "RF CMOS differential oscillator with source damping resistors," 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers, Long Beach, CA, USA, 2005, pp. 399-402, doi: 10.1109/RFIC.2005.1489824.
    [27] J. Sun, C. C. Boon, X. Zhu, X. Yi, K. Devrishi and F. Meng, "A Low-Power Low-Phase-Noise VCO With Self-Adjusted Active Resistor," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 3, pp. 201-203, March 2016, doi: 10.1109/LMWC.2016.2521167.
    [28] F. Pepe, A. Bonfanti, S. Levantino, C. Samori and A. L. Lacaita, "Suppression of Flicker Noise Up-Conversion in a 65-nm CMOS VCO in the 3.0-to-3.6 GHz Band," in IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2375-2389, Oct. 2013, doi: 10.1109/JSSC.2013.2273181.
    [29] S.-L. Jang, Y.-T. Chiu, C.-W. Chang, et al., "CMOS quadrature VCO using the injection MOSFET coupling, " Microw. Opt. Technol. Lett., 2011, 53, pp. 2631– 2634, doi: 10.1002/mop.26363
    [30] D. Fathi and A. Nejad, "Ultra-low power, low phase noise 10 GHz LC VCO in the subthreshold regime," Circuits and Systems, Vol. 4 No. 4, 2013, pp. 350-355.
    [31] E. Hegazi, H. Sjoland and A. A. Abidi, "A filtering technique to lower LC oscillator phase noise," in IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001, doi: 10.1109/4.972142.
    [32] Q. Zou, K. Ma, K. S. Yeo and W. M. Lim, "Design of a Ku-band Low-Phase-Noise VCO Using the Dual $LC$ Tanks," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 5, pp. 262-266, May 2012, doi: 10.1109/TCSII.2012.2190855.
    [33] Z. Zong, G. Mangraviti and P. Wambacq, "Low 1/f3 noise corner LC-VCO design using flicker noise filtering technique in 22nm FD-SOI," IEEE Trans. Circuits and Systems—II: Express Briefs, vol. 67, no. 5, pp. 1469-1480, May 2020, doi: 10.1109/TCSI.2020.2970267.
    [34] N. N. Tchamov and N. T. Tchamov, "Technique for Flicker Noise Up-Conversion Suppression in Differential LC Oscillators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 11, pp. 959-963, Nov. 2007, doi: 10.1109/TCSII.2007.904135.
    [35] D. K. Biswas and I. Mahbub, "A Low-Power Duty-Cycled Impulse-Radio Ultrawideband (IR-UWB) Transmitter with Bandwidth and Frequency Reconfigurability Scheme Designed in 180 nm CMOS Process," 2021 IEEE Radio and Wireless Symposium (RWS), San Diego, CA, USA, 2021, pp. 49-52, doi: 10.1109/RWS50353.2021.9360388.
    [36] Y. Park, and I. Kwo, "A CMOS 6–10 GHz impulse radio UWB transmitter based on gated oscillator with switching pulse shaper, " Microelectronics J., vol. 77, 2018, Pages 1-4, ISSN 0026-2692, https://doi.org/10.1016/j.mejo.2018.05.004.
    [37] R. Dong, R. K. Pokharel, H. Kanaya and K. Yoshida, "Balun with passband characteristic for ultra-wideband (UWB) impulse radio transmitter," 2012 IEEE Radio and Wireless Symposium, Santa Clara, CA, USA, 2012, pp. 323-326, doi: 10.1109/RWS.2012.6175338.
    [38] R. Dong, H. Kanaya and R. K. Pokharel, "A CMOS Ultrawideband Pulse Generator for 3–5 GHz Applications," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 6, pp. 584-586, June 2017, doi: 10.1109/LMWC.2017.2701306.
    [39] Dong Hun Shin, C. P. Yue and Jaejin Park, "A low-power, 3-5-GHz CMOS UWB LNA using transformer matching technique," 2007 IEEE Asian Solid-State Circuits Conference, Jeju, 2007, pp. 95-98, doi: 10.1109/ASSCC.2007.4425740.
    [40] C. Shu, M. -S. Kang, S. -K. Han and S. -G. Lee, "A single chip CMOS transmitter for UWB impulse radar applications," 2008 Asia-Pacific Microwave Conference, Hong Kong, China, 2008, pp. 1-4, doi: 10.1109/APMC.2008.4958339.
    [41] M. J. Zhao, B. Li and Z. H. Wu, "20-pJ/Pulse 250 Mbps Low-Complexity CMOS UWB Transmitter for 3–5 GHz Applications," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 3, pp. 158-160, March 2013, doi: 10.1109/LMWC.2013.2245412.
    [42] H. Kim, J. Kim, J. Kim, H, Chung, and H. Shin, "Design of a 3.5-GHz OOK CMOS transmitter with triangular pulse shaping," 2009 International SoC Design Conference (ISOCC), Busan, Korea (South), 2009, pp. 104-107, doi: 10.1109/SOCDC.2009.5423886.
    [43] H. Kim, J. Kim, and H. Shin, "A 2.4-GHz 22-Mbps CMOS OOK transmitter for wireless body area network, " IEICE Electron. Express 8(11): 825-829 (2011).
    [44] L. C. Moreira, J. F. Neto, T. Ferauche, G. A. Silva Novaes and E. T. Rios, "All-digital reconfigurable IR-UWB pulse generator using BPSK modulation in 130nm RF-CMOS process," 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS), Bariloche, Argentina, 2017, pp. 1-4, doi: 10.1109/LASCAS.2017.7948096.
    [45] B. J. Seo, D. W. Park, and Y. S. Eo, "A fully integrated 7–9 GHz UWB radar IC with an LO correlation receiver," J. Electromagnetic Engineering and Science, 10.26866/jees.2023.1.r.139, 23, 1, (10-17), (2023).
    [46] W. I. Jang, W. S. Choi, T. O. Kong, M. C. Park, and Y. S. Eo, "A power efficient impulse generator for 6-9 GHz UWB applications," Microw. Opt. Technol. Lett., vol. 61, no. 3, pp. 587–591, 2019.
    [47] M. Liu, J. Xiao, P. Luo, Z. Zhu and Y. Yang, "Ultrawideband Power-Switchable Transmitter With 17.7-dBm Output Power for See-Through-Wall Radar," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 5, pp. 1331-1335, May 2020, doi: 10.1109/TVLSI.2020.2972687.
    [48] V.-S. Trinh and J.-D. Park, ‘‘An X-band single-pull class A/B power amplifier in 0.18µm CMOS,’’ Microw. Opt. Technol. Lett., vol. 61, no. 7, pp. 1736–1740, Jul. 201
    [49] S. Radiom, M. Baghaei-Nejad, K. Aghdam, G. A. E. Vandenbosch, L. -R. Zheng and G. G. E. Gielen, "Far-Field On-Chip Antennas Monolithically Integrated in a Wireless-Powered 5.8-GHz Downlink/UWB Uplink RFID Tag in 0.18- μm Standard CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1746-1758, Sept. 2010, doi: 10.1109/JSSC.2010.2055630.
    [50] R. Xu, Y. Jin, and C. Nguyen, "Power-efficient switching-based CMOS UWB transmitters for UWB communications and Radar systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 8, pp. 3271-3277, Aug. 2006, doi: 10.1109/TMTT.2006.877830.
    [51] K.-Y. Lin and M. N. El-Gamal, "Design of low power CMOS ultra-wideband 3.1–10.6 GHz pulse-based transmitters," 2008 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 2008, pp. 583-586, doi: 10.1109/CICC.2008.4672152.
    [52] Y. Zheng, K.-W. Wong, M. A. Asaru, D. Shen, W. H. Zhao, Y. J. The, P. Andrew, F. Lin, W. G. Yeoh, and R. Singh, “A 0.18μm CMOS dual-band UWB transceiver,” 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, USA, 2007, pp. 114-590, doi: 10.1109/ISSCC.2007.373614.
    [53] A. H. Ansari and C. L. Law, “Circuit analysis and optimization of the high-voltage high-efficiency IR-UWB pulse generator for ranging and radar application,” IET Circuits Devices Syst. 14(4): 562-568 (2020).
    [54] Y. S. Eo, M. C. Park, and M.-C. Ha, “A 6.5 – 8.5 GHz CMOS UWB transmitter using switched LC VCO,” J. Semiconductor Tech. and Science, Vol.15, No.3, pp. 417-422, June 2015.
    [55] W. Feng, N. Li, and X. Li, “A 3–5 GHz UWB impulse generator in 0.13 μm CMOS,” Microw Opt Technol Lett., 10.1002/mop.30011, 58, 9, (2242-2245), (2016).
    [56] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu and A. M. Niknejad, "A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1054-1063, May 2008, doi: 10.1109/JSSC.2008.920347.
    [57] P. S., K. S., and V. V., "Design and simulation of impulse radio UWB transmitter with differential ring VCO," 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), Vellore, India, 2019, pp. 1-6, doi: 10.1109/ViTECoN.2019.8899437.
    [58] S. Jin, H. Gao and G. Li " Nonlinear characteristics of on-chip spiral inductors under high RF power," Microelectron. J., 42 (2) (2011), pp. 440-444
    [59] T. Kim, B. Kim, I. Nam, B. Ko, and K. Lee, “A low-power highly linear cascoded multiple-gate transistor CMOS RF amplifier with 10 dB IP3 improvement,” in IEEE Microwave and Wireless Components Letters, vol. 13, no. 9, pp. 420-422, Sept. 2003, doi: 10.1109/LMWC.2003.818748.
    [60] D. -G. Kim, N. P. Hong and Y. -W. Choi, "A Novel Linearization Method of CMOS Drive Amplifier Using IMD Canceller," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 671-673, Oct. 2009, doi: 10.1109/LMWC.2009.2029759.
    [61] U. R. Pfeiffer and D. Goren, "A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 857-865, May 2007, doi: 10.1109/TMTT.2007.895654.
    [62] Y. Ding and R. Harjani, "A high-efficiency CMOS +22-dBm linear power amplifier," in IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1895-1900, Sept. 2005, doi: 10.1109/JSSC.2005.848179.

    QR CODE