簡易檢索 / 詳目顯示

研究生: 林保彤
Pao-Tung Lin
論文名稱: 分散式智慧型生產排程-以SMT 產線為例
Decentralized intelligent scheduling - a case study of SMT production line
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 郭人介
Ren-Jieh Kuo
曹譽鐘
Yu-Chung Tsao
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 53
中文關鍵詞: SMT產線多目標優化生產排程分散式運算智慧代理人
外文關鍵詞: SMT production line, multi-objective optimization, production plan, distributed computing, intelligent agent
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了滿足現在市場電路板規格多樣化需求,許多企業在工廠中導入SMT產線,在SMT生產規劃中物料準備、產線平衡與排程效率都是SMT產線營運之關鍵成功因素。本研究提出一種分散式多目標優化的生產排程模型,藉由分散式系統中不同智慧代理人間訊息的溝通,以實現SMT產線智慧代理人不同目標的協同優化。本研究並經由實驗設計驗證,找到能影響目標的關鍵因素及決策因子。本研究期望透過此智慧型生產排程模型之研究成果,讓實際SMT產線的決策者做出較佳決策,以達成在有限的時間內完成SMT產線多面向之優化。


    To meet the diversified needs of Printed Circuit Board (PCB) specifications in the current market, many companies adopt Surface Mount Technology (SMT) production lines into their factories. Material preparation, production line balancing and scheduling efficiency are the three key success factors for SMT production line operations. This study proposed a production scheduling model based on distributed multi-objective optimization. The model realizes the collaborative optimization of the intelligent agents (i.e., material, capacity, and scheduling agents) with different goals through the communication among the agents. Moreover, the proposed model was verified by experimental design to find the key parameters that significantly affect the distinct goals. The intelligent production scheduling model proposed in this study can help decision-makers manage SMT production lines to make efficient PCB production.

    摘要 i Abstract ii 誌謝 iii Contents iv Contents of Figure v Contents of Table vi Chapter 1 Introduction 1 Chapter 2 Literature review 4 2.1 Multi-objective optimization on production management 4 2.2 Distributed computing on production management 6 Chapter 3 Agent-based modeling for intelligent scheduling 10 3.1 Proposed framework 10 3.2 Intelligent material agent 12 3.3 Intelligent capacity agent 17 3.4 Intelligent scheduling agent 21 3.5 Distributed negotiation protocol 23 Chapter 4 Experiment and discussion 27 4.1 Model performance 27 4.2 Validation by design of experiment 32 4.3 Discussion 35 Chapter 5 Conclusions 37 Appendix 1. Adjustment between parameters and change of target value after each communication. 39 References 41

    References
    An, Y., Chen, X., Zhang, J., & Li, Y. (2020). A hybrid multi-objective evolutionary algorithm to integrate optimization of the production scheduling and imperfect cutting tool maintenance considering total energy consumption. Journal of Cleaner Production, 268, 121540.
    Becker, T., Lier, S., & Werners, B. (2019). Value of modular production concepts in future chemical industry production networks. European Journal of Operational Research, 276(3), 957-970.
    Behnamian, J., & Ghomi, S. M. T. F. (2021). Multi-objective multi-factory scheduling. RAIRO-Operations Research, 55, S1447-S1467.
    Chinda, P. R., & Rao, R. D. (2022). Multi-attribute decision making approach for placement of dynaflow controllers in a power system network using particle mobility honey bee algorithm. Ain Shams Engineering Journal, 13(5), 101682.
    Dohale, V., Ambilkar, P., Gunasekaran, A., & Bilolikar, V. (2022). A multi-product and multi-period aggregate production plan: a case of automobile component manufacturing firm. Benchmarking: An International Journal.
    Fayyaz, M., & Vladimirova, T. (2016). Survey and future directions of fault-tolerant distributed computing on board spacecraft. Advances in Space Research, 58(11), 2352-2375.
    Fu, Y., Hou, Y., Wang, Z., Wu, X., Gao, K., & Wang, L. (2021). Distributed scheduling problems in intelligent manufacturing systems. Tsinghua Science and Technology, 26(5), 625-645.
    Ganji, M., Kazemipoor, H., Molana, S. M. H., & Sajadi, S. M. (2020). A green multi-objective integrated scheduling of production and distribution with heterogeneous fleet vehicle routing and time windows. Journal of Cleaner Production, 259, 120824.
    Guo, Z., Wong, W. K., Li, Z., & Ren, P. (2013). Modeling and Pareto optimization of multi-objective order scheduling problems in production planning. Computers & Industrial Engineering, 64(4), 972-986.
    Heinrich, S. M., Elkouh, A., Nigro, N. J., & Lee, P. S. (1990). Solder joint formation in surface mount technology—Part I: Analysis.
    Hofmann, M., & Rünger, G. (2015). Sustainability through flexibility: Building complex simulation programs for distributed computing systems. Simulation Modelling Practice and Theory, 58, 65-78.
    Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective optimization. Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence,
    Hou, R., Ren, G., Gao, W., & Liu, L. (2021). Research on cyberspace multi-objective security algorithm and decision mechanism of Energy Internet. Future Generation Computer Systems, 120, 119-124.
    Jarrahi, F., & Abdul-Kader, W. (2015). Performance evaluation of a multi-product production line: An approximation method. Applied Mathematical Modelling, 39(13), 3619-3636.
    Katti, B. (2020). Ontology-based approach to decentralized production control in the context of cloud manufacturing execution systems.
    Lujak, M., Fernández, A., & Onaindia De La Rivaherrera, E. (2020). A decentralized multi-agent coordination method for dynamic and constrained production planning. Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems,
    Malik, A. I., & Sarkar, B. (2020). Disruption management in a constrained multi-product imperfect production system. Journal of manufacturing systems, 56, 227-240.
    May, M. C., Kiefer, L., Kuhnle, A., Stricker, N., & Lanza, G. (2021). Decentralized multi-agent production control through economic model bidding for matrix production systems. Procedia CIRP, 96, 3-8.
    Okpoti, E. S., & Jeong, I.-J. (2021). A reactive decentralized coordination algorithm for event-driven production planning and control: a cyber-physical production system prototype case study. Journal of manufacturing systems, 58, 143-158.
    Pandey, R., & Silakari, S. (2021). Investigations on optimizing performance of the distributed computing in heterogeneous environment using machine learning technique for large scale data set. Materials Today: Proceedings.
    Prasad, R. (2013). Surface mount technology: principles and practice. Springer Science & Business Media.
    Prasad, R. P. (1997). Introduction to surface mount technology. In Surface Mount Technology (pp. 3-50). Springer.
    Qiu, N., Jin, Z., Liu, J., Fu, L., Chen, Z., & Kim, N. H. (2021). Hybrid multi-objective robust design optimization of a truck cab considering fatigue life. Thin-Walled Structures, 162, 107545.
    Ramon-Cortes, C., Alvarez, P., Lordan, F., Alvarez, J., Ejarque, J., & Badia, R. M. (2021). A survey on the Distributed Computing stack. Computer Science Review, 42, 100422.
    Rifai, A. P., Nguyen, H.-T., & Dawal, S. Z. M. (2016). Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling. Applied Soft Computing, 40, 42-57.
    Rocha, E. M., Brochado, Â. F., & Moura, A. (2022). Workers benchmarking using multi-directional efficiency analysis in a manufacturing production system. Procedia Computer Science, 200, 1451-1460.
    Sabar, M., Montreuil, B., & Frayret, J.-M. (2012). An agent-based algorithm for personnel shift-scheduling and rescheduling in flexible assembly lines. Journal of Intelligent Manufacturing, 23(6), 2623-2634.
    Sahabuddin, M., & Khan, I. (2021). Multi-criteria decision analysis methods for energy sector's sustainability assessment: Robustness analysis through criteria weight change. Sustainable Energy Technologies and Assessments, 47, 101380.
    Smith, R. G., & Davis, R. (1981). Frameworks for cooperation in distributed problem solving. IEEE Transactions on systems, man, and cybernetics, 11(1), 61-70.
    Sundaram, R. M., & Yu, C.-C. (1990). A scheduling strategy in the manufacture of printed circuit boards (PCBs) using surface mount technology (SMT). Computers & Industrial Engineering, 19(1-4), 47-52.
    Uchida, T., & Akazawa, Y. M. (1992). Optical surface mount technology. Japanese journal of applied physics, 31(5S), 1652.
    Wątróbski, J., Karczmarczyk, A., & Rymaszewski, S. (2020). Multi-criteria decision making approach to production line optimization. Procedia Computer Science, 176, 3820-3830.
    Wu, J., Li, Y., Ren, F., & Yang, B. (2021). Robust and auditable distributed data storage with scalability in edge computing. Ad Hoc Networks, 117, 102494.
    Xie, J., Gao, L., Pan, Q.-k., & Tasgetiren, M. F. (2019). An effective multi-objective artificial bee colony algorithm for energy efficient distributed job shop scheduling. Procedia Manufacturing, 39, 1194-1203.
    Xu, Y., Chau, V., & Möhring, R. H. (2022). Introduction to the special section on parallel and distributed computing, algorithms, programming, applications and technologies (VSI-pdcat4). In (Vol. 100, pp. 107929): Elsevier.

    無法下載圖示 全文公開日期 2025/07/14 (校內網路)
    全文公開日期 2027/07/14 (校外網路)
    全文公開日期 2027/07/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE