簡易檢索 / 詳目顯示

研究生: 何奕霖
Yi-Lin He
論文名稱: 混合有偏隨機密鑰基因演算法與局部搜索於流程生產排程之研究
A Study on the Hybridization of Biased Random Key Genetic Algorithm and Local Search for Flow Shop Production Scheduling
指導教授: 曾世賢
Shih-Hsien Tseng
口試委員: 王孔政
Kung-Jeng Wang
賴正育
Lai-Cheng Yu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 52
中文關鍵詞: 流程生產有偏隨機密鑰基因演算法局部搜索演算法
外文關鍵詞: Flow production, Biased Random-Key Genetic Algorithm, Local search algorithm
相關次數: 點閱:189下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流程生產環境在眾多產業中廣泛存在,如何找到最佳的生產順序以減少時間的浪費一直是研究的重點。目前,基因演算法是解決排程問題常用的方法之一,能夠在可行的時間內找到可行解或最佳解,適用於大量的排列問題。然而,傳統的基因演算法容易產生不可行解,增加了計算時間。因此,在本研究中我們採用了有偏隨機密鑰基因演算法來解決不可行解的問題。為了提升演算法的局部搜索能力,我們結合了禁忌搜尋與模擬退火演算法,以實現對局部區域的快速有效搜索,平衡全局和局部搜索能力。我們使用Taillard的120個問題實例來測試演算法的性能,並通過實驗設計找出最佳的參數設置。在實驗結果中,相對於HGSA和GA-TS,HGATS-SA在統計上具有顯著優勢,且演算法的變異數也小於CHFPSO。因此,我們提出的演算法能夠有效解決流程生產問題。


    The optimization of production sequencing has been a prominent research area in various industries characterized by production environments. Genetic Algorithm (GA) has emerged as a popular approach for solving sequencing problems, as it can provide feasible or optimal solutions within a reasonable timeframe, particularly for a large number of permutation problems. However, the conventional GA may encounter challenges in generating feasible solutions, leading to increased computational efforts. To address this issue, the Biased Random Key Genetic Algorithm (BRKGA) is employed in this study to tackle infeasible solution problems. Additionally, a combination of Tabu Search and Simulated Annealing algorithms is implemented to enhance the algorithm's local search capability, facilitating efficient and rapid searches within local regions while maintaining a balance between global and local search capabilities. The proposed algorithm's performance is evaluated using Taillard's 120 problem instances, and an experimental design is applied to identify the optimal parameter settings. The experimental results demonstrate that HGATS-SA exhibits significant improvements compared to HGSA and GA-TS algorithms. Furthermore, the algorithm demonstrates lower variance compared to CHFPSO. As a result, the algorithm proposed in this study effectively addresses production sequencing problems.

    摘要 i ABSTRACT ii TABLE OF CONTENTS iii LIST OF FIGURES v LIST OF TABLES 1 CHAPTER 1 INTRODUCTION 2 1.1 Research Background 2 1.2 Research Objective 3 1.3 Thesis Structure 5 CHAPTER 2 LITERATURE REVIEW 6 2.1 The Application of Biased Random-Key Genetic Algorithm 6 2.2 The Application of Tabu Search 8 2.3 The Application of Simulated Annealing 9 2.4 Jumping Gene Operator 11 CHAPTER 3 METHODOLGY 12 3.1 Problem Description 14 3.2 Biased Random-Key Genetic Algorithm 16 3.3 Tabu Search 20 3.3.1 Neighborhood Structure 20 3.3.2 Tabu Mechanism 23 3.4 Simulated Annealing 23 CHAPTER 4 EXPERIMENTAL RESULTS 26 4.1 Performance Evaluation Metrics for Algorithms 26 4.3 Other Algorithms 27 4.2 Parameter Setting and Response Surface Methodology 27 4.3 Solving Permutation Flow Shop using HGATS-SA 34 CHAPTER 5 CONCLUSIONS 42 5.1 Conclusion and Implications 42 5.2 Future Research 43 REFERENCES 44 APPENDIX 50

    Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M. (2022). Differential evolution: A recent review based on state-of-the-art works. Alexandria EngineeringJournal,61(5),3831-3872https://doi.org/10.1016/j.aej.2021.09.013
    ARIK, O. A. (2022). Genetic algorithm application for permutation flow shop scheduling problems. Gazi University Journal of Science, 35(1), 92-111.
    Abreu, L. R., Tavares-Neto, R. F., & Nagano, M. S. (2021). A new efficient biased random key genetic algorithm for open shop scheduling with routing by capacitated single vehicle and makespan minimization. Engineering Applications of Artificial Intelligence, 104, 104373
    Bank, M., Fatemi Ghomi, S. M. T., Jolai, F., & Behnamian, J. (2012). Application of particle swarm optimization and simulated annealing algorithms in flow shop scheduling problem under linear deterioration. Advances in Engineering Software, 47(1), 1-6. https://doi.org/10.1016/j.advengsoft.2011.12.001
    Bean, J. C. (1994). Genetic Algorithms and Random Keys for Sequencing and Optimization. ORSA Journal on Computing, 6(2), 154-160. https://doi.org/10.1287/ijoc.6.2.154
    Ben-Daya, M., & Al-Fawzan, M. (1998). A tabu search approach for the flow shop scheduling problem. European Journal of Operational Research, 109(1), 88-95.
    Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135-4151. https://doi.org/10.1016/j.asoc.2011.02.032
    Brammer, J., Lutz, B., & Neumann, D. (2022). Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning. European Journal of Operational Research, 299(1), 75-86. https://doi.org/10.1016/j.ejor.2021.08.007
    Baker, K. R., & Trietsch, D. (2013). Principles of sequencing and scheduling. John Wiley & Sons.
    Chen, C.-F., Wu, M.-C., & Lin, K.-H. (2013). Effect of solution representations on Tabu search in scheduling applications. Computers & Operations Research, 40(12), 2817-2825. https://doi.org/10.1016/j.cor.2013.06.003
    Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. https://doi.org/10.1016/j.rcim.2013.04.001
    Damm, R. B., Resende, M. G. C., & Ronconi, D. P. (2016). A biased random key genetic algorithm for the field technician scheduling problem. Computers&OperationsResearch,75,49-63. https://doi.org/10.1016/j.cor.2016.05.003
    Gümüşçü, A., Kaya, S., Tenekeci, M. E., Karaçizmeli, İ. H., & Aydilek, İ. B. (2022). The impact of local search strategies on chaotic hybrid firefly particle swarm optimization algorithm in flow-shop scheduling. Journal of King Saud University – Computer and Information Sciences, 34(8), 6432-6440. https://doi.org/10.1016/j.jksuci.2021.07.017
    Geurtsen, M., Didden, J. B. H. C., Adan, J., Atan, Z., & Adan, I. (2023). Production, maintenance and resource scheduling: A review. European Journal of Operational Research, 305(2), 501-529. https://doi.org/10.1016/j.ejor.2022.03.045
    Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533-549.
    Glover, F., & Laguna, M. (1998). Tabu search. Springer.
    Gonçalves, J. F., & Resende, M. G. (2014). An extended Akers graphical method with a biased random‐key genetic algorithm for job‐shop scheduling. International Transactions in Operational Research, 21(2), 215-246
    Gonçalves, J. F. (2015). A hybrid biased random key genetic algorithm for a production and cutting problem. IFAC-PapersOnLine, 48(3), 496-500.
    Gonçalves, J. F., & Resende, M. G. C. (2010). Biased random-key genetic algorithms for combinatorial optimization. Journal of Heuristics, 17(5), 487-525. https://doi.org/10.1007/s10732-010-9143-1
    Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. In Annals of discrete mathematics (Vol. 5, pp. 287-326). Elsevier.
    Guzman, E., Andres, B., & Poler, R. (2022). Models and algorithms for production planning, scheduling and sequencing problems: A holistic framework and a systematic review. Journal of Industrial Information Integration, 27. https://doi.org/10.1016/j.jii.2021.100287
    Harbaoui, H., & Khalfallah, S. (2020). Tabu-search optimization approach for no-wait hybrid flow-shop scheduling with dedicated machines. Procedia Computer Science, 176, 706-712.
    Li, X., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. International Journal of Production Economics, 174, 93-110. https://doi.org/10.1016/j.ijpe.2016.01.016
    Li, Y., Li, X., Gao, L., Fu, L., & Wang, C. (2022). An efficient critical path based method for permutation flow shop scheduling problem. Journal of Manufacturing Systems, 63, 344-353. https://doi.org/10.1016/j.jmsy.2022.04.005
    Liaw, C.-F. (2003). An efficient tabu search approach for the two-machine preemptive open shop scheduling problem. Computers & Operations Research, 30(14), 2081-2095. https://doi.org/10.1016/s0305-0548(02)00124-7
    Liu, L. (2019). Outsourcing and rescheduling for a two-machine flow shop with the disruption of new arriving jobs: A hybrid variable neighborhood search algorithm. Computers & Industrial Engineering, 130, 198-221. https://doi.org/10.1016/j.cie.2019.02.015
    McClintock, B. (1951). Chromosome organization and genic expression. Cold Spring Harbor symposia on quantitative biology.
    Osman, I. H., & Potts, C. (1989). Simulated annealing for permutation flow-shop scheduling. Omega, 17(6), 551-557.
    Pan, Q.-K., & Ruiz, R. (2013). A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Computers & Operations Research, 40(1), 117-128. https://doi.org/10.1016/j.cor.2012.05.018
    Ripon, K. S. N., Tsang, C.-H., & Kwong, S. (2006). Multi-objective evolutionary job-shop scheduling using jumping genes genetic algorithm. The 2006 IEEE International Joint Conference on Neural Network Proceedings
    Rahman, H. F., Sarker, R., & Essam, D. (2015). A genetic algorithm for permutation flow shop scheduling under make to stock production system. Computers & Industrial Engineering, 90, 12-24. https://doi.org/10.1016/j.cie.2015.08.006
    Ramesh, C., Kamalakannan, R., Karthik, R., Pavin, C., & Dhivaharan, S. (2021). A lot streaming based flow shop scheduling problem using simulated annealing algorithm. Materials Today: Proceedings, 37, 241-244. https://doi.org/10.1016/j.matpr.2020.05.108
    Seyed-Alagheband, S., Davoudpour, H., Doulabi, S., & Khatibi, M. (2009). Using a modified simulated annealing algorithm to minimize makespan in a permutation flow-shop scheduling problem with job deterioration. Proceedings of the world congress on engineering and computer science,
    Sukkerd, W., & Wuttipornpun, T. (2016). Hybrid genetic algorithm and tabu search for finite capacity material requirement planning system in flexible flow shop with assembly operations. Computers & Industrial Engineering, 97, 157-169. https://doi.org/10.1016/j.cie.2016.05.006
    Shao, W., Pi, D., & Shao, Z. (2016). A hybrid discrete optimization algorithm based on teaching–probabilistic learning mechanism for no-wait flow shop scheduling. Knowledge-Based Systems, 107, 219-234. https://doi.org/10.1016/j.knosys.2016.06.011
    Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285.
    Thamilselvan, R., & Balasubramanie, P. (2012). Integrating genetic algorithm, tabu search and simulated annealing for job shop scheduling problem. International Journal of Computer Applications, 48(5), 42-54.
    Tayeb, F. B.-S., Bessedik, M., Benbouzid, M., Cheurfi, H., & Blizak, A. (2017). Research on permutation flow-shop scheduling problem based on improved genetic immune algorithm with vaccinated offspring. Procedia Computer Science, 112, 427-436.
    Umam, M. S., Mustafid, M., & Suryono, S. (2022). A hybrid genetic algorithm and tabu search for minimizing makespan in flow shop scheduling problem. Journal of King Saud University - Computer and Information Sciences, 34(9), 7459-7467. https://doi.org/10.1016/j.jksuci.2021.08.025
    Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2), 117-129.
    Gonçalves, J. F., & Resende, M. G. (2011). Biased random-key genetic algorithms for combinatorial optimization. Journal of Heuristics, 17(5), 487-525.
    Lalla-Ruiz, E., González-Velarde, J. L., Melián-Batista, B., & Moreno-Vega, J. M. (2014). Biased random key genetic algorithm for the tactical berth allocation problem. Applied Soft Computing, 22, 60-76.
    Wei, H., Li, S., Jiang, H., Hu, J., & Hu, J. (2018). Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion. Applied Sciences, 8(12), 2621
    Zhang, H., Liu, F., Zhou, Y., & Zhang, Z. (2020). A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic assignment problem. Information Sciences, 539, 347-374.

    QR CODE