簡易檢索 / 詳目顯示

研究生: 龔力歐
Li-Ou Kung
論文名稱: 應用平行計算於考量風險之多目標橋梁維護策略最佳化
Parallel Computing Framework for Optimizing Multi-Objective Risk-based Bridge Maintenance Strategies
指導教授: 楊亦東
I-Tung Yang
口試委員: 王維志
Wei-Chih Wang
楊智斌
Jyh-Bin Yang
謝佑明
Yo-Ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 146
中文關鍵詞: 橋梁維護生命週期成本不確定性風險多目標最佳化平行計算
外文關鍵詞: Bridge Maintenance, Life-Cycle Cost, Uncertainty Risk, Multi-Objective Optimization, Parallel Computing
相關次數: 點閱:340下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 橋樑維護之功用在於確保橋梁結構工作性,提升整體服務功能;隨著台灣地區橋梁建設趨於飽和,橋梁重點由新建轉成維護。橋梁維護即成為一重要且刻不容緩的問題。

    生命週期維護成本一直為多數維護策略評選模式之唯一目標與重點,本研究嘗試以權衡橋梁性能與維護成本兩者為目標,考量橋梁之狀況指標、安全指標與生命週期維護成本三種決策目標於橋梁生命週期中的權衡,並結合定期式的主動維護與必要性的被動維護兩種維護方式,來決定最佳之維護策略。

    本研究以多目標質群演算法尋找於橋梁生命週期中之最佳維護作用時間點,其中包含生命週期中第一次維護時間與第一次維護後之間隔維護時間。並以蒙地卡羅模擬將橋樑生命中狀態指標劣化行為與維護經費等不確定性風險加入模式中,使評選指標能更貼近真實情況。

    由於結合電腦模擬與多目標質群演算需要耗費大量計算時間,本研究使用平行分散式系統來解決此問題,利用多台多核心電腦處理器分散計算量,嘗試以主從式、分群式與滲透式多種精英解傳遞方式縮短程式計算時間,得以在較短時間之下取得較為嚴謹之數據。

    多目標最佳化問題為一妥協解所組成,在本研究架構所建立的評選模式下,將提供在不同維修預算所對應之狀況指標與安全指標以表示橋梁之性能狀態,在三種評選目標上形成一條柏拉圖前緣,使決策者能依照評選模式之結果進行權衡分析,提供更具彈性的決策參考。並在最後以案例來驗證本模式之效率與有效性。


    Making an efficient maintenance plan with limited funding is the toughest segment for the bridge management organization. Since the bridge structure is very complicated and the maintenance process is multiform and full of uncertainty, adopting a suitable strategy for bridge maintenance is not only an interesting but also a critical problem. Conventionally, the bridge maintenance usually goes with the criterion which is called “Fix it while it is damaged!” Such a manner not only raises the risks of the users, but also causes a huge waste in social resource and funding. For the reasons above, the bridge maintenance strategy must be reformed to save the maintaining cost and provide a reliable safeguard.
    Most bridge maintenance system models are established to minimize the life-cycle maintaining cost of the deteriorating bridges. In this study, we propose a novel strategy to build the bridge maintaining model from a different viewpoint. Based on the tradeoff between bridge performance and maintenance cost, we consider the risks associated with bridge deterioration and maintenance cost. With this approach, the proposed bridge maintaining model can be more realistic and more flexible.
    In our framework, we consider the tradeoff between bridge condition index, safety index, and maintenance cost in life-cycle. The maintaining strategy is made by combining both active and passive maintenance. By different maintaining strategies, the parallel framework incorporates a Multi-Objective Particle Swarm Optimization used as the search engine to find the optimal maintenance time in life-cycle. Moreover, with the Monte-Carlo simulation, the uncertainty risk of bridge deterioration and maintaining cost are incorporated into the framework.
    Available optimization models can be used to generate optimal tradeoffs, however their application in optimizing large-scale project is limited due to their extensive and impractical computational time requirements. In this study, we develop three types of message-passing parallel framework to slove this limitation and compare their efficiency.
    With the time-varying bridge performance indices, the proposed bridge maintaining strategy can provide proper condition index and safety index with different maintenance budget. For the decision maker, the bridge maintaining strategy is no longer being limited with minimizing the cost. Depending on the relative importance, the managers may place on various objectives under consideration, which provide much more flexibility to select the final compromise maintenance solution. At last, a practical example is used to validate the result of model.

    第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法與流程 1.4 論文架構 第二章 文獻回顧 2.1 維護管理 2.1.1 維護管理之概念 2.1.2 維護管理之方式與分類 2.2 橋梁維護管理 2.2.1 台灣橋梁管理系統之發展現況 2.2.2 美國橋梁管理系統之發展現況 2.2.3 歐洲橋梁管理系統之發展現況 2.2.4 日本橋梁管理系統之發展現況 2.3 生命週期成本分析法 2.3.1 生命週期成本 2.3.2 生命週期成本評估方式 2.4 應用生命週期成本分析法於橋梁管理之相關研究應用 2.5 多目標最佳化 2.5.1 多目標決策之概念 2.5.2 多目標最佳化方法 2.6 小結 第三章 研究方法介紹 3.1 蒙地卡羅模擬 3.1.1 蒙地卡羅模擬概念 3.1.2 蒙地卡羅模擬步驟 3.1.3 蒙地卡羅模擬的特點 3.2 質群演算法 3.2.1 群體智慧 3.2.2 質群演算法概念 3.2.3 質群演算法參數 3.2.4 質群演算法計算步驟 3.2.5 多目標質群演算法與計算步驟 3.3 平行計算系統 3.3.1 平行系統架構概述 3.3.2 叢集電腦系統 3.3.3 平行化程式技術 3.3.4 平行效能評估 3.3.4.1 平行程式執行時間 3.3.4.2 平行加速度與平行效率 3.3.4.3 Amdahl's Law與Gustafson's Law 3.3.5 影響平行效能的因素 3.4 本研究平行系統架構 3.4.1 硬體部分 3.4.2 軟體部分 3.4.3 MPI平行函式庫 3.4.4 質群演算法應用於平行計算系統之介紹與相關文獻 3.5 小結 第四章 橋梁維護策略評選模式與平行程式架構 4.1 橋梁維護策略評選問題定義 4.1.1 性能指標之數學模式 4.1.2 維護策略之數學模式 4.1.2.1 定期性維護策略 4.1.2.2 必要性維護策略 4.1.2.3 定期性維護與必要性維護之結合模式 4.1.3 生命週期成本數學模式 4.2 求解模式介紹 4.2.1 蒙地卡羅模擬之模式 4.2.2 多目標質群演算法之模式 4.2.3 結合蒙地卡羅模擬與多目標質群演算法之最佳化模式 4.2.4 平行系統架構與傳遞方式 4.2.4.1 主從式精英解傳遞方式 4.2.4.2 分群式精英解傳遞方式 4.2.4.3 滲透式精英解傳遞方式 4.3 小結 第五章 案例實證 5.1 僅定期性維護之計算結果 5.2 結合定期性維護與必要性維護之結果 5.3 比較三種平行策略 5.3.1 評估方式 5.3.2 三種平行策略比較結果 5.4 小結 第六章 結論與未來研究方向 6.1 結論 6.2 未來研究方向 參考文獻

    中文文獻
    1.蔣偉寧等,建立台灣地區橋樑管理系統研究報告,交通部運輸研究所,1991
    2.許志義,多目標決策,五南圖書出版公司,1994
    3.謝景惠,非監督式模糊神經網路推理模式於個人電腦叢集之平行計算,國立交通大學土木工程系碩士論文,2001
    4.李偉生,建設公司維修管理服務品質之研究,國立中央大學土木工程研究所碩士論文,2002
    5.建立台灣地區橋梁管理系統,交通部運輸研究所,2002
    6.胡曉輝(2002)。粒子群優化算法介紹。2009年4月20日,URL:http://www.swarmintelligence.org/papers/cPSOTutorial.pdf
    7.連夷佐,橋梁生命週期成本評估模式之研究,國立中央大學土木工程研究所碩士論文,2003
    8.許鎧麟、黃榮堯、林主潔等,生命週期成本導向之橋梁設計研究(含軟體手冊)(草案)交通部科技顧問室委託計畫,2003.12
    9.黃榮堯,許鎧麟,王仲宇等,橋梁生命週期成本評估方法與結構使用年限之建立,交通部科技顧問室委託計畫,2003
    10.王治元,智慧型基因演算法於多目標排程之發展與應用-以PCB鑽孔作業為例,元智大學工業工程與管理研究所碩士論文,2004
    11.張耀文,高屏溪斜張橋劣化評估系統之建立,國立雲林科技大學營建工程系士班碩士論文,2004
    12.許鎧麟、林主潔、張鎮國等,生命週期成本導向之橋梁設計研究(1/2),交通部科技顧問室委託計畫,2004.01
    13.劉堅,於德介,李德剛等,設備維護與管理的量化評估研究,管理工程學報,2004,18(4):P131-134.
    14.陳屏甫,國道預力混凝土橋與鋼橋生命週期成本評估個案之研究,國立中央大學營建管理研究所碩士論文,2005
    15.楊振翰,臺灣地區橋梁維護管理現況與未來發展策略之研究,國立中央大學營建管理研究所碩士論文,2005
    16.董楊琴,多目標決策的群體意見共識方法及其應用研究,南京理工大學計算機應用技術學系碩士論文,2006
    17.許硯舜,考量風險條件下之橋梁維護策略評選最佳化,淡江大學土木工程系碩士論文,2008
    18.高邦基,台灣橋梁維護管理之面向,營建知訊315期,財團法人臺灣營建研究院,2009
    19.翁愷翔,橋梁維修與整建效益評估比較之研究,國立中央大學營建管理研究所碩士論文,2009
    20.交通部網站URL: http://www.motc.gov.tw/,2010

    英文文獻
    1.Amdahl, Gene. "Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities" . AFIPS Conference Proceedings (30): 483–485, 1967
    2.Buyya, R., "High Performance Cluster Computing: System and Architecture", Vol. 1, Prentice Hall PTR, NJ, 1999
    3.BRIME (Bridge Management in Europe),EU-project ,Deliverable D8 , 2001.2 URL:http://www.trl.co.uk/brime/deliver.htm
    4.Coello, C. and Lechuga , M., "Mopso: A proposal for multiple objective particle swarm optimization", IEEE, Vol. 2, 2002, pp. 1051-1056.
    5.Coello, C.A.C., Pulido, G., T., Lechuga, M.S., "Handling Multiple Objectives with Particle Swarm Optimization", IEEE Transactions on Evolutionary Computation, Vol 8, No 3, pp. 256-279,2004.
    6.Duffuaa, S.O., Raouf, A., Campbell JD, "Planning and control of maintenance systems", Indianapolis: John Wiley and Sons, 2000
    7.Dunn, S., Maintenance Terminology – Some Key Terms, The plant Maintenance Resource Center, URL:http://www.plant-maintenance.com/terminology.shtml, 2002
    8.Enright, M.P. and Frangopol, D.M., "Service-life prediction of deteriorating concrete bridges". ASCE J. Struct. Engng. 124 3, pp. 309–317, 1998
    9.Emmerich, Michael, Beume, Nicola, and Naujoks, Boris, "An EMO Algorithm Using the Hypervolume Measure as Selection Criterion ", 2005
    10.Flynn, M., "Some Computer Organizations and Their Effectiveness", IEEE Trans. Comput., Vol. C-21, pp. 948, 1972
    11.Frangopol, D.M., Kong, J.S. and Gharaiben, E.S."Reliability-based life-cycle management of highway bridges", Journal of Computing in Civil Engineering, 27-34, 2001
    12.Frangopol, D.M., Liu,M.. "Life-cycle Cost Analysis for Highways Bridges: Accomplishments and Challenges", ASCE, 2004,124(4):21-27
    13.Gustafson, John L., "Reevaluating Amdahl's Law", Communications of the ACM 31(5), 1988. pp. 532-533.
    14.Kennedy, J. and Eberhart, R. "Particle Swarm Optimization",IEEE International Conference on Neural Networks(Perth,Australia),IEEE Service Center,Piscataway,NJ,1995,IV:1942—1948
    15.Kennedy J, "Thinking is Social: Experiments with the Adaptive Culture Model". Journal of Conflict Resolution, 1998, 42(1):56-76.
    16.Kong, J.S. and Frangopol, D.M. "System Approach to Bridge Management Reliability and Sensitivity", IABMAS,Barcelona,2002,(7):14-17
    17.Kong, J.S., Frangopol, D.M. "Life-cycle reliability-based maintenance coat optimization of deteriorating structures with emphasis on bridges", Journal of Structural Engineering, ASCE, 2003b ,129(6):818-828
    18.Kong, J.S., Frangopol, D.M. "Cost-reliability interaction in Life-cycle cost optimization of deteriorating structures", Journal of Structural Engineering, 2004,130(11), 1704-1712
    19.Kalivarapu, V., J. L. Foo, et al., "A parallel implementation of particle swarm optimization using digital pheromones", Portsmouth, VA, United states, American Institute of Aeronautics and Astronautics Inc, 2006
    20.Liu,C., Hammad, A. and Itoh, Y. "Maintenance strategy optimization of bridge decks using genetic algorithm", Journal of Transportation Engineering, ASCE, 123(2), 91-100, 1997
    21.Law, Averill M., "Designing a simulation study: how to conduct a successful simulation study ", Proceedings of the 35th conference on Winter simulation: driving innovation, December 07-10, 2003, New Orleans, Louisiana
    22.Lee, Y.J., Chang, L.M., "Rehabilitation decision analysis and life-cycle costing of the infrastructure system", Construction Research, 2003,(11):1-6
    23.Liu, M. and Frangopol, D.M., "Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety and life-cycle cost", Journal of Structural Engineering, Vol 131, No.5, 833-842, 2005
    24.Miyamoto, A., Kawamura, K. and Nakamura, H. "Bridge management system and maintenance optimization for existing bridges", Computer-Aided Civil and Infrastructure Engineering 15, 45-55, 2000
    25.Moubray, J., Reliablility-centred maintenance. Second edtion. New York: Industrial Press.2001,19-25
    26.Neves , L.C., Frangopol, D.M. "Condition, safety and cost profiles for deteriorating structures with emphasis on bridges", Reliability Engineering and System Safety 89, 185-198, 2005
    27.Neves, L.C., Frangopol, D.M. and Cruz, P.S., "Probabilistic Lifetime-Oriented Mulitobjective optimization of bridge maintenance: single maintenance type", Journal of Structural Engineering, Vol. 132, No. 6, 991-1005, 2006
    28.NSF, URL: http://www.rocksclusters.org/, 2010
    29.Pintelon, L. and Gelder, L.F. "Maintenance management decision making", European Journal of Operational Research, vol. 58, pp. 301-317, 1992
    30.Rubinstein, R.Y.; Kroese, D. P. Simulation and the Monte Carlo Method (2nd ed.). New York: John Wiley & Sons. ISBN 9780470177938, 2007
    31.Scherer, W.T., and D.M. Glagola, "Markovian models for bridge maintenance management", Journal of Transportation Engineering, Vol. 120, No.1, 37-51, 1994
    32.Shi Y., Eberhart R.C., "Parameter Selection in Particle Swarm Optimization", In: Evolutionary Programming VII:Proc. EP98. New York:Springer-Verlag, 1998, 591.600
    33.Schutte, J. F., J. A. Reinbolt, et al. "Parallel global optimization with the particle swarm algorithm." International Journal for Numerical Methods in Engineering 61(13): 2296-2315, 2004
    34.Scriven, I., D. Ireland, et al. "Asynchronous multiple objective particle swarm optimisation in unreliable distributed environments ", Hong Kong, China, Inst. of Elec. and Elec. Eng. Computer Society, 2008
    35.Scriven, I., A. Lewis, et al. "Decentralised distributed multiple objective particle swarm optimisation using peer to peer networks ", Hong Kong, China, Inst. of Elec. and Elec. Eng. Computer Society, 2008
    36.Venter, G. and Sobieszczanski-Sobieski, J., "A Parallel particle swarm optimization algorithm accelerated by asynchronous evaluations." Journal of Aerospace Computing, Information and Communication 3(3): 123-137, 2006
    37.Wireman, T., "Developing performance indicators for managing maintenance", New York: Industrial Press, 1998

    QR CODE