簡易檢索 / 詳目顯示

研究生: 賴凱右
Kai-You Lai
論文名稱: 基於共振模態分析之配電網路被動式濾波器最佳化設計
Resonance mode analysis based approach for optimal design of harmonic passive filters in distribution networks
指導教授: 楊念哲
Nien-Che Yang
口試委員: 吳啟瑞
Chi Jui Wu
謝廷彥
Ting-Yen Hsieh
黃維澤
Wei-Tzer Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 180
中文關鍵詞: 配電系統諧波共振模態分析被動式電力濾波器諧波電力潮流蝙蝠演算法多目標最佳化頻率靈敏度
外文關鍵詞: Passive power filter, Harmonic resonance, Modal analysis, distribution system, Harmonic power flow, multi-objective optimization, Bat algorithm, Frequency sensitivity
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與步驟 2 1.3 研究貢獻 3 1.4 論文架構概述 3 第二章 電力諧波分析理論 5 2.1 前言 5 2.2 諧波概論 5 2.2.1 電力諧波定義 5 2.2.2 電力諧波來源與影響 6 2.2.3 電力品質標準 8 2.3 諧波改善方法 10 2.4 諧波分析技術 11 2.4.1 諧波電力潮流 12 2.4.2 頻率掃描 13 2.5 諧波共振模態分析(HRMA) 14 2.5.1 特徵值拆解 14 2.5.2 Modal 參與因數 16 2.5.3 Modal 靈敏度分析 18 2.5.4 HRMA測試 24 2.6 結語 33 第三章 配電系統建構與諧波電力潮流分析 35 3.1 前言 35 3.2 配電系統模型 35 3.2.1 輸電線 35 3.2.2 變壓器 37 3.2.3 負載模型 43 3.2.4 電容器模型 50 3.2.5 被動式濾波器 52 3.3 直接 法之諧波電力潮流 57 3.3.1 匯流排阻抗建構 57 3.3.2 匯流排注入電流 62 3.3.3 直接 電力潮流演算法 63 3.3.4 諧波電力潮流 66 3.4 系統模擬測試與結果分析 76 3.4.1 電力潮流準確度分析 76 3.4.2 諧波電力潮流案例分析 79 3.5 快速諧波電力潮流分析法 83 3.5.1 準確度分析 86 3.5.2 運算時間分析 90 3.5.3 對諧波共振之影響 90 3.6 結語 92 第四章 多目標最佳化 93 4.1 前言 93 4.2 最佳化演算法 93 4.2.1 蝙蝠演算法 94 4.2.2 演算法性能比較 98 4.3 多目標最佳化 99 4.3.1 柏拉圖最佳化 100 4.3.2 多目標蝙蝠演算法(Multi-objective bat algorithm) 102 4.4 曼哈頓距離 104 4.5 結語 106 第五章 被動式電力濾波器設計與個案分析 107 5.1 前言 107 5.2 被動式濾波器最佳設計與函數建立 107 5.2.1 目標函數 107 5.2.2 限制條件 109 5.2.3 被動式濾波器參數設計 112 5.2.4 被動式濾波器擺放策略 114 5.3 個案分析 118 5.3.1 測試系統 118 5.3.2 安裝電容器之測試系統 121 5.4 測試結果分析 125 5.4.1 測試系統之模擬結果 125 5.4.2 安裝電容器測試系統之模擬結果 132 5.5 結語 143 第六章 結論與未來研究方向 145 6.1 結論 145 6.2 未來研究方向 147 參考文獻 149 附錄A 153 附錄B 163 附錄C 165

    [1] 江榮城,「電力品質」全華圖書股份有限公司, 2012.
    [2] 王耀諄,「電力系統品質」新文京開發出版股份有限公司, 2005.
    [3] 王耀諄,「電力品質」高立圖書有限公司, 2005.
    [4] T. Ortmeyer and K. J. I. T. P. A. S. Chakravarthi, "The effects of power system harmonics on power system equipment and loads," 1985.
    [5] V. Wagner et al., "Effects of harmonics on equipment," vol. 8, no. 2, pp. 672-680, 1993.
    [6] I. S. A. J. I. Power and E. Society, "Ieee std 519-2014. recommended practice and requirements for harmonic control in electric power systems," vol. 29, 2014.
    [7] K. Sakthivel, S. K. Das, and K. Kini, "Importance of quality AC power distribution and understanding of EMC standards IEC 61000-3-2, IEC 61000-3-3 and IEC 61000-3-11," in 8th International conference on electromagnetic interference and compatibility, 2003, pp. 423-430: IEEE.
    [8] S. J. G. I. f. S. B. Standard, Germany, "Voltage Characteristics of Electricity Supplied by Public Electricity Networks," 2010.
    [9] A. Bonner et al., "Modeling and simulation of the propagation of harmonics in electric power networks. 1. Concepts, models, and simulation techniques," vol. 11, no. 1, pp. 452-465, 1996.
    [10] A. Bonner et al., "Modeling and simulation of the propagation of harmonics in electric power networks. 2. sample systems and examples," vol. 11, no. 1, pp. 466-474, 1996.
    [11] C.-Y. Chang and J.-H. Teng, "Three-phase harmonic load flow method," in 2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT'02., 2002, vol. 2, pp. 839-844: IEEE.
    [12] X. Jiang and A. J. I. T. o. P. D. Gole, "A frequency scanning method for the identification of harmonic instabilities in HVDC systems," vol. 10, no. 4, pp. 1875-1881, 1995.
    [13] L. Eggenschwiler, O. Galland, D. Chollet, F. Decorvet, D. Roggo, and P. J. C.-O. A. P. J. Favre-Perrod, "Frequency scans and resonance mode analysis for resonance problems identification in power networks in presence of harmonic pollution," vol. 2017, no. 1, pp. 650-654, 2017.
    [14] Z. Huang, Y. Cui, and W. J. I. T. o. P. S. Xu, "Application of modal sensitivity for power system harmonic resonance analysis," vol. 22, no. 1, pp. 222-231, 2007.
    [15] H. Hu, Z. He, Y. Zhang, and S. J. I. t. o. p. d. Gao, "Modal frequency sensitivity analysis and application using complex nodal matrix," vol. 29, no. 2, pp. 969-971, 2013.
    [16] L. Hong, W. Shu, J. Wang, and R. J. I. T. o. P. D. Mian, "Harmonic resonance investigation of a multi-inverter grid-connected system using resonance modal analysis," vol. 34, no. 1, pp. 63-72, 2018.
    [17] H. Zhou, Y.-W. Wu, S.-H. Lou, and X.-Y. J. P. o. t. C. Xiong, "Series resonance analysis based on modal analysis and dummy branch method," vol. 28, 2007.
    [18] W. Xu, Z. Huang, Y. Cui, and H. J. I. T. o. P. D. Wang, "Harmonic resonance mode analysis," vol. 20, no. 2, pp. 1182-1190, 2005.
    [19] Y. Cui and X. J. I. T. o. P. D. Wang, "Modal frequency sensitivity for power system harmonic resonance analysis," vol. 27, no. 2, pp. 1010-1017, 2012.
    [20] T.-H. Chen, M.-S. Chen, K.-J. Hwang, P. Kotas, and E. A. J. I. T. o. P. D. Chebli, "Distribution system power flow analysis-a rigid approach," vol. 6, no. 3, pp. 1146-1152, 1991.
    [21] T.-H. Chen, M.-S. Chen, T. Inoue, P. Kotas, and E. A. J. I. T. o. P. D. Chebli, "Three-phase cogenerator and transformer models for distribution system analysis," vol. 6, no. 4, pp. 1671-1681, 1991.
    [22] M.-S. Chen and T.-H. Chen, "Application of three-phase load flow to power system distribution automation," in 1991 International Conference on Advances in Power System Control, Operation and Management, APSCOM-91., 1991, pp. 472-478: IET.
    [23] W. H. Kersting, Distribution system modeling and analysis. CRC press, 2006.
    [24] T.-H. Chen and J.-D. Chang, "Open wye-open delta and open delta-open delta transformer models for rigorous distribution system analysis," in IEE Proceedings C (Generation, Transmission and Distribution), 1992, vol. 139, no. 3, pp. 227-234: IET.
    [25] D. P. Kothari and I. Nagrath, Modern power system analysis. Tata McGraw-Hill Education, 2003.
    [26] N.-C. J. I. G. Yang, Transmission and Distribution, "Three-phase power flow calculations using direct Z BUS method for large-scale unbalanced distribution networks," vol. 10, no. 4, pp. 1048-1055, 2016.
    [27] 吳啟瑞,陳在相,張鴻展,「電力系統分析3/E」東華書局, 2011.
    [28] R. Abu-Hashim et al., "Test systems for harmonics modeling and simulation," vol. 14, no. 2, pp. 579-587, 1999.
    [29] M. E. Baran and F. F. J. I. P. E. R. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing," vol. 9, no. 4, pp. 101-102, 1989.
    [30] X.-S. Yang, "A new metaheuristic bat-inspired algorithm," in Nature inspired cooperative strategies for optimization (NICSO 2010): Springer, 2010, pp. 65-74.
    [31] X.-B. Meng, X. Z. Gao, Y. Liu, and H. J. E. S. w. A. Zhang, "A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization," vol. 42, no. 17-18, pp. 6350-6364, 2015.
    [32] N.-C. Yang, M.-D. J. I. G. Le, Transmission, and Distribution, "Multi-objective bat algorithm with time-varying inertia weights for optimal design of passive power filters set," vol. 9, no. 7, pp. 644-654, 2015.
    [33] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-international conference on neural networks, 1995, vol. 4, pp. 1942-1948: IEEE.
    [34] S. Mirjalili, S. M. Mirjalili, and A. J. A. i. e. s. Lewis, "Grey wolf optimizer," vol. 69, pp. 46-61, 2014.
    [35] D. Karaboga, "An idea based on honey bee swarm for numerical optimization," Technical report-tr06, Erciyes university, engineering faculty, computer …2005.
    [36] D. J. S. Whitley and computing, "A genetic algorithm tutorial," vol. 4, no. 2, pp. 65-85, 1994.
    [37] J. Knowles and D. J. I. T. o. E. C. Corne, "Properties of an adaptive archiving algorithm for storing nondominated vectors," vol. 7, no. 2, pp. 100-116, 2003.
    [38] W.-Y. Chiu, G. G. Yen, and T.-K. J. I. T. o. E. C. Juan, "Minimum manhattan distance approach to multiple criteria decision making in multiobjective optimization problems," vol. 20, no. 6, pp. 972-985, 2016.
    [39] J. J. I. t. o. i. a. Das, "Passive filters-potentialities and limitations," vol. 40, no. 1, pp. 232-241, 2004.
    [40] C.-J. Chou, C.-W. Liu, J.-Y. Lee, and K.-D. J. I. T. o. P. S. Lee, "Optimal planning of large passive-harmonic-filters set at high voltage level," vol. 15, no. 1, pp. 433-441, 2000.
    [41] Y.-P. Chang, W.-K. Tseng, T.-F. J. I. P.-G. Tsao, Transmission, and Distribution, "Application of combined feasible-direction method and genetic algorithm to optimal planning of harmonic filters considering uncertainty conditions," vol. 152, no. 5, pp. 729-736, 2005.
    [42] N. He, D. Xu, and L. J. I. t. o. i. e. Huang, "The application of particle swarm optimization to passive and hybrid active power filter design," vol. 56, no. 8, pp. 2841-2851, 2009.
    [43] N.-C. Yang and M.-D. J. A. S. C. Le, "Optimal design of passive power filters based on multi-objective bat algorithm and pareto front," vol. 35, pp. 257-266, 2015.
    [44] M. Ayoubi, R.-A. Hooshmand, M. T. J. I. G. Esfahani, Transmission, and Distribution, "Optimal capacitor placement in distorted distribution systems considering resonance constraint using multi-swarm particle swarm optimisation algorithm," vol. 11, no. 13, pp. 3210-3221, 2017.
    [45] G. W. Chang, S.-Y. Chu, and H.-L. Wang, "Sensitivity-based approach for passive harmonic filter planning in a power system," in 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 02CH37309), 2002, vol. 2, pp. 937-940: IEEE.
    [46] M. Milovanović, J. Radosavljević, D. Klimenta, and B. J. E. E. Perović, "GA-based approach for optimal placement and sizing of passive power filters to reduce harmonics in distorted radial distribution systems," vol. 101, no. 3, pp. 787-803, 2019.
    [47] A. Variz, F. Niquini, J. Pereira, P. Barbosa, S. Carneiro, and P. Ribeiro, "Allocation of power harmonic filters using genetic algorithm," in 2012 IEEE 15th International Conference on Harmonics and Quality of Power, 2012, pp. 143-149: IEEE.

    無法下載圖示 全文公開日期 2026/12/28 (校內網路)
    全文公開日期 2026/12/28 (校外網路)
    全文公開日期 2026/12/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE