簡易檢索 / 詳目顯示

研究生: 賴立霖
Li-Lin Lai
論文名稱: 熱浸鍍鋁A36低碳鋼銲接件於氯化鈉/硫酸鈉熱腐蝕環境之高溫潛變
The High-temperature Creep Behavior of A36 Mild Steel Weldments with Hot-dipped Aluminum in NaCl/Na2SO4 Hot-corrosion Environments
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 郭俞麟
Yu-Lin Kuo
開物
Wu Kai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 149
中文關鍵詞: 低碳鋼同質銲接熱浸鍍鋁熱腐蝕潛變
外文關鍵詞: Low carbon steel, Similar weldment, Hot dip aluminizing, Hot corrosion, Creep
相關次數: 點閱:231下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗採用低碳鋼同質銲接件及經鋁化處理之銲材,於試片表面沉積2 mg / cm2 氯化鈉/硫酸鈉混合鹽層,比較試片沉積和未沉積混合鹽於750 ℃ 固定應力負載下之潛變行為。
      實驗結果顯示,低碳鋼同質銲接件於熱腐蝕環境中,試片表面因快速生成肥厚的氧化皮膜,阻止脫碳及不正常晶粒成長,使低碳鋼同質銲接件於熱腐蝕環境拉伸壽命較高溫氧化環境增加2小時。試片經熱浸鍍鋁程序後,因鋁塗層在高溫時增加試片抗氧化能力,另一方面,鋁化層在拉伸頸縮時,造成鋁化層向內擠壓,鋁化層硬度較高可減緩頸縮現象延後斷裂時間,於高溫氧化環境拉伸壽命增加17小時。鋁化處理試片於熱腐蝕環境拉伸,受到鋁化層的保護增加抗熱腐蝕能力,使其拉伸壽命和單純高溫氧化環境拉伸,有著近乎相同的拉伸壽命。
    關鍵詞:低碳鋼,同質銲接,熱浸鍍鋁,熱腐蝕,潛變。


      The main objective of the current research was to determine and compare creep resistance of uncoated weldment in a low-carbon steel material with that of an aluminized weldment of a similar low-carbon steel substrate. The experiment was conducted in an environment containing salt solution by depositing about 2 mg/cm2 mixture of NaCl/Na2SO4 at 750 C.
      The experimental results show that similar welded parts of the low-carbon steel substrate in hot corrosion environment formed a thick oxide film which prevented decarburization and abnormal grain growth. Thus, the low-carbon steel similar welded parts are stretched in hot corrosion environment with two hours higher creep life.
      After the hot-dip aluminizing process of the low carbon steel similar weldment, the aluminide coating highly improved oxidation resistance of the substrate material at high-temperature exposure. During creep test, aluminized coatings due to its high hardness slowed down the necking phenomenon and therefore delayed the rupture time increasing creep life by 17 hours under high temperature oxidation. The aluminized substrate under creep test in hot corrosion showed similar improvement as that tested in simple high temperature environment.
    Key words: Low carbon steel; Similar weldment; Hot dip aluminizing; Hot corrosion; Creep

    目錄 第一章 前言 1 第二章 文獻回顧 2 2.1 潛變 2 2.1.1 潛變斷裂 2 2.1.2 潛變機制 5 2.2 銲接 8 2.2.1 惰氣鎢極電弧銲( Tungsten Inert Gas Welding, TIG) 8 2.2.2 低碳鋼同質銲接 11 2.3 高溫氧化 14 2.3.1 高溫氧化熱力學 14 2.3.2 高溫氧化動力學 16 2.4 熱腐蝕 18 2.4.1 熱腐蝕發生形式 18 2.4.2 熔融鹽 20 2.4.3 NaCl-Na2SO4混合鹽之熱腐蝕 23 2.5 不正常晶粒成長 25 2.6 熱浸鍍鋁 28 2.6.1 熱浸鍍鋁目的與原理 28 2.6.2 碳鋼熱浸鍍鋁 29 2.6.3 熱浸鍍鋁後高溫氧化與孔洞之生成 32 第三章 實驗方法 34 3.1 實驗流程 34 3.2 實驗材料與試片前置作業 35 3.3 熱浸鍍鋁製程 37 3.3.1 試片熱浸前處理 37 3.3.2 熱浸鍍鋁作業 37 3.4 高溫靜置試驗 39 3.4.1 高溫氧化靜置試驗 39 3.4.2 熱腐蝕靜置試驗 39 3.5 潛變試驗 41 3.5.1 高溫潛變試驗 41 3.5.2 熱腐蝕潛變試驗 41 3.6 分析設備與方法 44 3.6.1 分析設備 44 3.6.2 分析方法 44 第四章 實驗結果 46 4.1 同質銲接件之銲後組織 46 4.1.1 巨觀形貌和微硬度 46 4.1.2 母材和熱影響區之顯微組織 50 4.1.3 銲接金屬之顯微組織 50 4.2 低碳鋼同質銲接件熱浸鍍鋁 54 4.3 同質銲接件高溫潛變試驗 56 4.3.1 同質銲接件高溫氧化潛變試驗 56 4.3.2 同質銲接件熱腐蝕潛變試驗 62 4.4 鋁化處理同質銲接件高溫靜置試驗 68 4.4.1 鋁化處理同質銲接件高溫氧化試驗 68 4.4.2 鋁化處理同質銲接件熱腐蝕試驗 77 4.5 鋁化處理同質銲接件高溫潛變試驗 85 4.5.1 鋁化處理同質銲接件高溫氧化潛變試驗 85 4.5.2 鋁化處理同質銲接件熱腐蝕潛變試驗 92 第五章 討論 102 5.1 同質銲接件高溫潛變試驗 103 5.1.1 同質銲接件高溫氧化潛變試驗 103 5.1.2 同質銲接件熱腐蝕潛變試驗 107 5.2 鋁化處理同質銲接件高溫靜態試驗 110 5.2.1 鋁化處理同質銲接件高溫氧化試驗 110 5.2.2 鋁化處理同質銲接件熱腐蝕試驗 112 5.3 鋁化處理同質銲接件高溫潛變試驗 115 5.3.1 鋁化處理同質銲接件高溫氧化潛變試驗 115 5.3.2 鋁化處理同質銲接件熱腐蝕潛變試驗 118 第六章 結論 121 參考文獻 122

    參考文獻

    [1] C. C. Silva, J. T. D. Assis, S. Philippov, and J. P. Farias, "Residual Stress, Microstructure and Hardness of Thin-Walled Low-Carbon Steel Pipes Welded Manually," Materials Research, vol. 19, p. 1215-1225, 2016.
    [2] M. Badaruddin, C. J. Wang, Y. Saputra, and A. K. Rivai, "High Temperature Corrosion of Aluminized AISI 4130 Steel with the Different Composition of NaCl/Na2SO4 Deposits," Makara Journal of Techonolgy, vol. 19, no. 2, p. 45-50, 2015.
    [3] Y. Ruan, N. Yan, H. Z. Zhu, K. Zhou, and B. Wei, "Thermal performance determination of binary Fe-Al alloys at elevated temperatures," Journal of Alloys and Compounds, vol. 701, p. 676-681, 2017.
    [4] A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari, "Kinetic interactions between solid iron and molten aluminium," Materials Science and Engineering, vol. 363, no. 1, p. 53-61, 2003.
    [5] F. Barbier, D. Manuelli, and K. Bouché, "Characterization of aluminide coatings formed on 1.4914 and 316L steels by hot-dipping in molten aluminium," Scripta Materialia, vol. 36, no. 4, p. 425-431, 1997.
    [6] R. Naraparaju, "High temperature oxidation behaviour of boiler steels with emphasis on shot-peening effects experimental results and simulation," PhD dissertation, Material Science, Siegen University, 2013.
    [7] M. Marimuthu, "Design Of Welding Alloys Creep And Toughness," PhD dissertation, Materials Science and Metallurgy, Cambridge University, 2002.
    [8] K. Huang, K. Marthinsen, Q. Zhao, and R. Logé, "The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials," Progress in Materials Science, p. 284-359,2017.
    [9] 黃秉毅,低碳鋼熱浸鍍鋁及銲接之高溫疲勞,圖立台灣科技大學機械工程所碩士論文,民國105年。
    [10] R. S. Mishra, H. Jones, and G. W. Greenwood, "Creep of a low carbon steel at low stresses and intermediate temperatures," Acta Metallurgica et Materialia, vol. 38, no. 3, p. 461-468, 1990.
    [11] 李隆盛,銲接實習,全華圖書股份有限公司,2008年。
    [12] M. Eroğlu, M. Aksoy, and N. Orhan, "Effect of coarse initial grain size on microstructure and mechanical properties of weld metal and HAZ of a low carbon steel," Materials Science and Engineering, vol. 269, no. 1, p. 59-66, 1999.
    [13] A. A. B. Sugden and H. K. D. H. Bhadeshia, "A model for the strength of the As-deposited regions of steel weld metals," Metallurgical Transcations, vol. 19, no. 6, p. 1597-1602, 1988.
    [14] 林英志,熱處理對高入熱量電渣銲接TMCP結構鋼板機械性質與顯微組織之影響,高雄科學技術學院學報,二十八期,民國八十七年。
    [15] M. Gao, X. Zeng, Q. Hu, and J. Yan, "Laser-TIG hybrid welding of ultra-fine grained steel," Journal of Materials Processing Technology, vol. 209, no. 2, p. 785-791, 2009.
    [16] G. H. M. N. Birks, F. S. Pettit, "Introduction to the high temperature oxidation of metals," Cambridge University Press, 1983.
    [17] Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, "Criteria for the formation of protective Al2O3 scales on Fe–Al and Fe–Cr–Al alloys," Corrosion Science, vol. 48, no. 3, p. 741-765, 2006.
    [18] 游晴暉,機車排氣管用鋼料之高溫氧化,國立台灣科技大學機械所碩士論文,民國九十七年。
    [19] C. Hong, et al. "High-temperature oxidation performance and its mechanism of TiC/Inconel 625 composites prepared by laser metal deposition additive manufacturing," Journal of Laser Applications, vol. 27, no. 1, p. 17005, 2015.
    [20] A. S. Khanna, "Introduction to High temperature Oxidation and Corrosion," American Society for Metals, 2002.
    [21] Y. Shinata, F. Takahashi, and K. Hashiura, "NaCl-induced hot corrosion of stainless steels," Materials Science and Engineering, vol. 87, p. 399-405, 1987.
    [22] Y. N. Chang and F. I. Wei, "High-temperature chlorine corrosion of metals and alloys," Journal of Materials Science, vol. 26, no. 14, p. 3693-3698, 1991.
    [23] H. F. Mcmurdie and F. P. Hall, "Phase disgrams for ceramists: supplement no.1," Journal of the American Ceramic Society, vol. 32, p. 154-164, 1949.
    [24] 蔡昆哲,低碳鋼與304不銹鋼異質銲接件於氯化鈉/硫酸鈉混合鹽之熱腐蝕,國立台灣科技大學機械所碩士論文,民國103年。
    [25] 蘇永華,鐵基合金於氯化鈉/硫酸鈉混合鹽之熱腐蝕,國立台灣科技大學機械所碩士論文,民國八十八年。
    [26] J. A. Kowalik and A. R. Marder, "The effect of temperature on abnormal grain growth in low carbon steel," Scripta Metallurgica, vol. 18, no. 4, p. 305-307, 1984.
    [27] N. Chen, S. Zaefferer, L. Lahn, K. Günther, and D. Raabe, "Effects of topology on abnormal grain growth in silicon steel," Acta Materialia, vol. 51, no. 6, p. 1755-1765, 2003.
    [28] M. Sánchez-Araiza, S. Godet, P. J. Jacques, and J. J. Jonas, "Texture evolution during the recrystallization of a warm-rolled low-carbon steel," Acta Materialia, vol. 54, no. 11, p. 3085-3093, 2006.
    [29] R. W. Ashbrook and A. R. Marder, "The effect of initial carbide morphology on abnormal grain growth in decarburized low carbon steel," Metallurgical Transactions, vol. 16, no. 5, p. 897-906, 1985.
    [30] 鄭維仁,鉻鉬鋼熱浸鋁矽後鋁化層之顯微結構與高溫相變化行為,國立台灣科技大學機械所博士論文,民國壹零壹年。
    [31] A. Bahadur and O. N. Mohanty, "Structural Studies of Hot Dip Aluminized Coatings on Mild Steel," Materials Transactions, The Japan Institute of Metals and Materials, vol. 32, no. 11, p. 1053-1061, 1991.
    [32] K. Bouché, F. Barbier, and A. Coulet, "Intermetallic compound layer growth between solid iron and molten aluminium," Materials Science and Engineering, vol. 249, no. 1, p. 167-175, 1998.
    [33] 許芷寧,碳鋼中顯微組織對熱浸鍍鋁之作用,國立台灣科技大學機械所碩士論文,民國100年。
    [34] M. Badaruddin, C. J. Wang, H. Wardono, Tarkono, and D. Asmi, "High-temperature oxidation behavior of aluminized AISI 4130 steel," American Institute of Physics Publishing, vol. 1711, no.1, p. 040002, 2016
    [35] 朱慶霖,高溫熱應力對異質銲接件熱浸鍍鋁層之破壞機制,台灣科技大學機械所碩士論文,民國104年。
    [36] H. Nakajima, "The discovery and acceptance of the Kirkendall Effect: The result of a short research career," Journal of Metals, vol. 49, no. 6, p. 15-19, 1997.
    [37] H. K. D. H. Bhadeshia, "Diffusional and displacive transformations," Scripta Metallurgica, vol. 21, no. 8, p. 1017-1022, 1987.
    [38] C. Thaulow, A. J. Paauw, and K. Guttormsen, "Heat-affected zone toughness of low-carbon microalloyed steels," Metal Construction, vol. 17, No. 94, p. 266-279, 1985.
    [39] T. Furuhara, T. Moritani, K. Sakamoto, and T. Maki, "Substructure and Crystallography of Degenerate Pearlite in an FeC Binary Alloy," Materials science fourm, Trans Tech Publications, vol. 539 p. 4832-4837, 2007.
    [40] H. K. D. H. Bhadeshia and E. Svensson, "Modelling the Evolution of Microstructure in Steel Weld Metal," Institute of Materials, vol. 1, p 109-182, 1993.
    [41] Y. Liu, W. Zhang, Q. Tong, and L. Wang, "Effects of Temperature and Oxygen Concentration on the Characteristics of Decarburization of 55SiCr Spring Steel," The Iron and Steel Institute of Japan, vol. 54, no. 8, p. 1920-1926, 2014.
    [42] V. F. Kopytov, "Decreasing the decarbonization of steel," Metallurgist, vol. 10, no. 10, p. 588-590, 1966.
    [43] S. Lu, S. Wei, Z. Q. Liu, D. Li, and Y. Li, "Effects of Normalizing Process on the Microstructural Evolution and Mechanical Properties of Low Carbon Steel Weld Metal with Niobium Addition," The Iron and Steel Institute of Japan, vol. 50, no. 2, p. 248-254, 2010.
    [44] R. Sedláček, W. Blum, J. Kratochvíl, and S. Forest, "Subgrain formation during deformation: Physical origin and consequences," Metallurgical and Materials Transactions, vol. 33, no. 2, p. 319-327, 2002.
    [45] C. O. Moon and S. B. Lee, "Analysis on failures of protective-oxide layers and cyclic oxidation," Oxidation of Metals, vol. 39, no. 1, p. 1-13, 1993.
    [46] 涂宗漢,鋁塗層對低碳鋼、鐵錳鋁碳合金及310不銹鋼於氯化鈉熱腐蝕之耐蝕性改善,國立台灣科技大學機械所碩士論文
    民國八十四年。
    [47] K. E. Puttick, "Ductile fracture in metals," A Journal of Theoretical Experimental and Applied Physics, The Philosophical Magazine, vol. 4, no. 44, p. 964-969, 1959.
    [48] X. Jing, X. Yang, D. Shi, and H. Niu, "Tensile creep behavior of three-dimensional four-step braided SiC/SiC composite at elevated temperature," Ceramics International, vol. 43, no. 9, p. 6721-6729, 2017.

    QR CODE