簡易檢索 / 詳目顯示

研究生: 黎晃銘
Huang-Ming Li
論文名稱: 低碳鋼/鈦複合材料耐腐蝕性及耐磨耗性之改進及加工參數最佳化
Improvement of Corrosion Resistance and Wear Resistance for Low-carbon Steel/Titanium Composite Materials and Optimization of Processing Parameters
指導教授: 黃昌群
Chang-Chiun Huang
口試委員: 郭中豐
Chung-Feng Kuo
曾有志
YOU-ZHI ZENG
邱智瑋
Chih-Wei Chiu
蕭威典
WEI-DIAN XIAO
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 151
中文關鍵詞: 電弧熔噴微弧氧化腐蝕磨耗石墨烯碳化硼立方氮化硼田口法最佳化
外文關鍵詞: thermal spraying, micro-arc oxidation, wear, corrosion, graphene, boron carbide, cubic boron nitride, Taguchi method, optimization
相關次數: 點閱:294下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用低碳鋼為基材,以電弧熔射(Arc-sprayed)純鈦層及微弧氧化(Micro-arc oxidation, MAO)表面處理技術提升材料的抗磨耗及抗腐蝕能力。
    第一部分於低碳鋼表面電弧熔射純鈦層,接著以電壓450 V、電流密度35 A/dm2、微弧時間10 min及占空比(Duty Cycle) 50 %,添加不同濃度之添加劑(石墨烯、氮化硼及碳化硼)並在鈦/低碳鋼表面進行微弧氧化,完成後的氧化層進行表面形態、成分、晶相、膜厚、硬度、表面粗糙度、抗磨耗及抗腐蝕性能量測。實驗結果顯示,於MAO電解液之添加劑能有效提升複合材料抗磨耗及抗腐蝕性能,添加劑會經由MAO過程包覆於氧化層中,進而填補氧化層裂縫、孔洞並產生柱狀結構,阻止裂痕延伸,降低剝落現象。與無添加劑相較,當石墨烯添加劑濃度為0.007 g/L時,抗磨耗及抗腐蝕能力分別提升80 %及409 %;當氮化硼添加劑濃度為0.9 g/L時,抗磨耗及抗腐蝕能力分別提升72 %及403 %。當碳化硼添加劑濃度為0.9 g/L時,抗磨耗及抗腐蝕能力分別提升70 %及467 %,結果顯示石墨烯添加劑有較佳綜合性能。
    因此第二部分以石墨烯為添加劑,使用田口法進行MAO品質最佳化分析,以電壓、電流密度、石墨烯濃度及占空比為控制因子,各因子選擇3個水準值,再對抗磨耗及抗腐蝕性能進行54組實驗,經由訊號雜訊(Signal-to-noise, S/N)比、主效果分析及變異數分析後可獲得最佳參數組合為電壓450 V、電流密度35 A/dm2、占空比50 %及石墨烯濃度0.007 g/L,經確認實驗顯示抗磨耗及抗腐蝕性能分別優化約46.3 %及45.8 %,且確認實驗均落於95 %信賴區間內,證明最佳化參數具有可靠性及再現性。


    In this study, arc-sprayed pure titanium layer and micro-arc oxidation (MAO) surface treatment were used to enhance the wear and corrosion resistance of low-carbon steel as the substrate.
    In the first section, a pure titanium layer was coated on the low carbon steel by arc-spray, followed by micro-arc oxidation on the titanium layer with voltage 450 V, current density 35 A/dm2, operation time 10 min, and duty cycle 50% with different concentrations of additives (graphene, boron nitride, and boron carbide). The surface morphology, composition, crystalline phase, film thickness, hardness, surface roughness, wear, and corrosion resistance of the prepared oxide layers were measured. The experimental results indicated that the additives in the MAO electrolyte could effectively improve the wear and corrosion resistance of the composites. The additive would be coated in the oxide layer by the MAO process, which would fill the cracks and holes in the oxide layer and create a columnar structure to prevent the extension of cracks and reduce the peeling phenomenon. Compared with free additive, when the concentration of graphene additive was 0.007 g/L, the wear and corrosion resistance were increased by 80 % and 409 %, respectively. When the concentration of boron nitride additive was 0.9 g/L, the wear and corrosion resistance were increased by 72 % and 403 %. When the concentration of boron carbide additive was 0.9 g/L, the wear and corrosion resistance were increased by 70 % and 467 %. The results indicated that the graphene additive had better performance.
    Therefore, in the second part, the graphene was used as an additive to optimize the quality of MAO using Taguchi method, and voltage, current density, graphene concentration, and duty cycle were used as control factors. Each factor was selected as 3 levels, and 54 experiments were carried out to measure the wear and corrosion resistance. The signal-to-noise (S/N) raio, main effect analysis, and analysis of variance(ANOVA) resulted in the optimal combination of voltage 450 V, current density 35 A/dm2, duty cycle 50 %, and graphene concentration 0.007 g/L. The confirmation experiments indicated that the wear and corrosion resistance were improved by about 46.3% and 45.8% and the confirmation experiments fell within the 95% confidence interval, proving the reliability and reproducibility of the optimized parameters.

    摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第1章 緒論 1.1 研究背景與動機 1.2 文獻回顧 1.3 研究目的 1.4 論文架構 第2章 低碳鋼/鈦耐腐蝕及耐磨耗性之改進 2.1 材料基本性質介紹 2.2 表面處理技術 2.2.1 電弧熔射 2.2.2 微弧氧化 2.3 微弧氧化先期實驗及參數設定 2.4 試片製作及材料整備 2.5 微弧氧化設備及流程介紹 2.5.1 微弧氧化設備 2.5.2 微弧氧化流程 2.6 分析儀器介紹 2.6.1 表面形態分析 2.6.2 成份分析 2.6.3 X光繞射儀分析 2.6.4 膜厚分析 2.6.5 表面粗糙度分析 2.6.6 硬度分析 2.6.7 磨耗分析 2.6.8 電化學分析 2.7 實驗結果分析與討論 2.7.1 氧化層表面形態分析 2.7.2 氧化層成份分析測試 2.7.3 陶瓷層晶相結構分析 2.7.4 磨耗分析 69 2.7.5 電化學分析 2.7.6 實驗結果分析與討論 第3章 微弧氧化最佳化參數分析 3.1 田口法介紹 3.1.1 參數設計與因子效應 3.1.2 直交表 3.1.3 訊號雜訊比 3.1.4 因子效應 3.1.5 變異數分析 3.1.6 信賴區間 3.2 田口法實驗規劃 3.2.1 選擇品質特性及控制因子 3.2.2 直交表規劃 3.3 抗磨耗性能最佳化 3.4 抗腐蝕性能最佳化 3.5 實驗結果分析與討論 第4章 結論與未來展望 4.1 結論 4.2 未來展望 參考文獻 作者簡歷

    [1]楊春欽,磨潤學原理與應用,科技圖書股份有限公司,臺北市,(1986) 1-2。
    [2]蔡立宏,羅建明,柯正龍,賴瑞應,莊凱迪,2021年臺灣大氣腐蝕劣化因子調查研究資料年報,交通部運輸研究所,臺北市,2022。
    [3]柯賢文,王朝正,腐蝕及其防治,全華圖書股份有限公司,臺北市,(2014) 2-3,95-169。
    [4]M. Shokouhfar, and S. R. Allahkaram, Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles, Surface and Coatings Technology, 291 (2016) 396-405.
    [5]R. Starosta, The quantitative analysis of the effect of the porosity, the volume of fraction of reinforcing phase and the thermal spraying methods, on corrosion properties of composite coatings in marine environment, Journal of KONES Powertrain and Transport, 23 (2016)
    [6]J. N. Ndumia, M. Kang, B. V. Gbenontin, J. Lin, and S. M. Nyambura, A review on the wear, corrosion and high-temperature resistant properties of wire arc-sprayed Fe-based coatings, Nanomaterials, 11(10) (2021) 2527.
    [7]M. Kaseem, and Y. G. Ko, Effect of starch on the corrosion behavior of Al-Mg-Si alloy processed by micro arc oxidation from an ecofriendly electrolyte system, Bioelectrochemistry, 128 (2019) 133-139.
    [8]Q. Shao, B. Jiang, and S. Huang, A comparative study on the microstructure and corrosion resistance of MAO coatings prepared in alkaline and acidic electrolytes, Materials Research Express, 6(8) (2019) 0865b4.
    [9]T. W. Clyne, and S. C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals, International Materials Reviews, 64 (2017) 127-162.
    [10]F. Muhaffel, and H. Cimenoglu, Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy, Surface and Coatings Technology, 357 (2019) 822-832.
    [11]M. Molaei, A. Fattah-Alhosseini, and M. K. Keshavarz, Influence of different sodium-based additives on corrosion resistance of PEO coatings on pure Ti, Journal of Asian Ceramic Societies, 7 (2019) 247-255.
    [12]M. Kaseem, S. Fatimah, N. Nashrah, and Y. G. Ko, Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance, Progress in Materials Science, 117 (2021) 100735.
    [13]X. W. Chen, P. Ren, D. Zhang, J. Hu, C. Wu, and D. Liao, Corrosion and wear properties of h-BN-modified TC4 titanium alloy micro-arc oxide coatings, Surface Innovations, 40 (2022) 1-11.
    [14]Z. Li, and S. Di, The microstructure and wear resistance of microarc oxidation composite coatings containing nano-hexagonal boron nitride (HBN) particles, Journal of Materials Engineering and Performance, 26 (2017) 1551-1561.
    [15]Y. Song, D. Mandelli, O. Hod, M. Urbakh, M. Ma, and Q. Zheng, Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions, Nature Materials, 17(10) (2018) 894-899.
    [16]X. Li, C. Dong, Q. Zhao, Y. Pang, F. Cheng, and S. Wang, Characterization of microstructure and wear resistance of PEO coatings containing various microparticles on Ti6Al4V alloy, Journal of Materials Engineering and Performance, 27 (2018) 1642-1653.
    [17]Y. Gao, W. Yang, D. Xu, J. Chen, and B. Jiang, Microstructure and properties of graphene oxide-doped TiO2 coating on titanium by micro arc oxidation, Metallic Materials, 33 (2018) 1524-1529.
    [18]R. F. Albers, R. A. Bini, J. B. Souza Jr., D. T. Machado, and L. C. Varanda, A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials, Carbon, 143 (2018) 73-84.
    [19]W. Liu, C. Blawert, M. L. Zheludkevich, Y. Lin, M. Talha, Y. Shi, and L. Chen, Effects of graphene nanosheets on the ceramic coatings formed on Ti-6Al-4V alloy drill pipe by plasma electrolytic oxidation, Journal of Alloys and Compounds, 789 (2019) 996-1007.
    [20]Y. Zhang, F. Chen, Y. Zhang, Z. Liu, X. Wang, and C. Du, Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on Mg-Li alloy, Surface and Coatings Technology, 364 (2019) 144-156.
    [21]Z. Y. Li, Z. B. Cai, Y. Ding, X. J. Cui, Z. B. Yang, and M. H. Zhu, Characterization of graphene oxide/ZrO2 composite coatings deposited on zirconium alloy by micro-arc oxidation, Applied Surface Science, 506 (2020) 144928.
    [22]M. Xie, J. Cheng, C. Huo, and G. Zhao, Improving the lubricity of a bio-lubricating grease with the multilayer graphene additive, Tribology International, 150 (2020) 106386.
    [23]A. M. M. Ibrahim, W. Li, H. Xiao, Z. Zeng, Y. Ren, and M. S. Alsoufi, Energy conservation and environmental sustainability during grinding operation of Ti-6Al-4V alloys via eco-friendly oil/graphene nano additive and Minimum quantity lubrication, Tribology International, 150 (2020) 106387.
    [24]Y. X. Zhu, C. Y. Duan, H. Y. Liu, Y. F. Chen, and Y. Wang, Graphene coating for anti-corrosion and the investigation of failure mechanism, Journal of Physics D: Applied Physics, 50 (2017) 114001.
    [25]X. Ma, S. Jin, R. Wu, S. Zhang, L. Hou, B. Krit, S. Betsofen, and B. Liu, Influence of combined B4C/C particles on the properties of microarc oxidation coatings on Mg-Li alloy, Surface and Coatings Technology, 438 (2022) 128399.
    [26]Y. Fu, Y. Zhang, X. Y. Bao, W. Zhang, F. H. Wang, and L. Xin, Research progress on wear-resistant coatings for Ti-alloy, Journal of Chinese Society for Corrosion and Protection, 38 (2018) 117-123.
    [27]J. Huang, J. Ma, L. Wu, J. Wei, and H. Li, Microstructure and Wear Resistance of WS2/W Composite Coating on TC4 Titanium Alloy Surface, In Journal of Physics: Conference Series,1885 (2021) 032046.
    [28]Y. Vangolu, E. Arslan, Y. Totik, E. Demirci, and A. Alsaran, Optimization of the coating parameters for micro-arc oxidation of Cp-Ti, Surface and Coatings Technology, 205 (2010) 1764-1773.
    [29]N. Maharjan, W. Zhou, and N. Wu, Direct laser hardening of AISI 1020 steel under controlled gas atmosphere. Surface and Coatings Technology, 385 (2020) 125399.
    [30]T. Das, A. Erdogan, B. Kursuncu, E. Maleki, and O. Unal, Effect of severe vibratory peening on microstructural and tribological properties of hot rolled AISI 1020 mild steel, Surface and Coatings Technology, 403 (2020) 126383.
    [31]S. C. Liao, C. T. Chang, C. Y. Chen, C. H. Lee, and W. L. Lin, Functionalization of pure titanium MAO coatings by surface modifications for biomedical applications, Surface and Coatings Technology, 394 (2020) 125812.
    [32]O. Unal, A. C. Karaoglanli, Y. Ozgurluk, K. M. Doleker, E. Maleki, and R. Varol, Wear behavior of severe shot peened and thermally oxidized commercially pure titanium, In Engineering design applications, Springer Cham (2019) 461-470.
    [33]鈦金屬介紹,維基百科,取自https://zh.wikipedia.org/wiki/鈦
    [34]賴曉芳,光觸媒二氧化鈦奈米材料的應用 第一部分:摻雜奈米金於二氧化鈦應用於染料敏化太陽能電池 第二部分:製備氧化鈀/二氧化鈦奈米材料感測甲醛氣體之研究,博士論文,靜宜大學應用化學系,臺中市,2014。
    [35]J. E. S. Haggerty, L. T. Schelhas, D. A. Kitchaev, J. S. Mangum, L. M. Garten, W. Sun, K. H. Stone, J. D. Perkins, M. F. Toney, G. Ceder, D. S. Ginley, B. P. Gorman, and J. Tate, High-fraction brookite films from amorphous precursors, Scientific Reports, 7 (2017) 1-11.
    [36]咸才軍,奈米建材,五南圖書出版股份有限公司,台北市,(2004) 153-157。
    [37]H. H. Cao, W. T. Huo, S. F. Ma, Y. S. Zhang, and L. Zhou, Microstructure and corrosion behavior of composite coating on pure Mg acquired by sliding friction treatment and micro-arc oxidation, Materials, 11 (2018) 1232.
    [38]D. F. Fitriyana, W. Caesarendra, S. Nugroho, G. D. Haryadi, M. A. Herawan, M. Rizal, and R. Ismail, The effect of compressed air pressure and stand-off distance on the twin wire arc spray (TWAS) coating for pump impeller from AISI 304 stainless steel, In NAC 2019 (2020) 119-130.
    [39]L. Y. An, Y. Ma, X. X. Yan, S. Wang, and Z. Y. Wang, Effects of electrical parameters and their interactions on plasma electrolytic oxidation coatings on aluminum substrates, Transactions of Nonferrous Metals Society of China, 30 (2020) 883-895.
    [40]Y. H. Tang, D. Xiang, D. H. Li, L. Wang, P. Wang, and P. D. Han, Effects of current density in electrolyte containing graphene on properties of 2024 aluminum alloy micro-arc oxidation coating, Surface and Coatings Technology, 47 (2018) 203-208.
    [41]王偉成,黃崧任,D. Bogale,R. Tenne,電解液中添加 WS2 無機奈米顆粒對 AZ31 鎂合金的微弧氧化陶瓷膜影響之研究,防蝕工程,31 (2017) 1-14。
    [42]Y. Rao, Q. Wang, D. Oka, and C. S. Ramachandran, On the PEO treatment of cold sprayed 7075 aluminum alloy and its effects on mechanical, corrosion and dry sliding wear performances thereof. Surface and Coatings Technology, 383 (2020) 125271.
    [43]H. H. Cao, W. T. Huo, S. F. Ma, Y. S. Zhang, and L. Zhou, Microstructure and corrosion behavior of composite coating on pure Mg acquired by sliding friction treatment and micro-arc oxidation, Materials, 11 (2018) 1232.
    [44]F. Muhaffel, M. Kaba, G. Cempura, B. Derin, A. Kruk, E. Atar, and H. Cimenoglu, Influence of alumina and zirconia incorporations on the structure and wear resistance of titania-based MAO coatings, Surface and Coatings Technology, 377 (2019) 124900.
    [45]W. Shang, F. Wu, Y. Y. Wang, A. R. Baboukani, Y. Wen, and J. Jiang, Corrosion resistance of micro-arc oxidation/graphene oxide composite coatings on magnesium alloys, American Chemical Society Omega, 5 (2020) 7262-7270.
    [46]M. Shokouhfar, and S. R. Allahkaram, Effect of incorporation of nanoparticles with different composition on wear and corrosion behavior of ceramic coatings developed on pure titanium by micro arc oxidation, Surface and Coatings Technology, 309 (2017) 767-778.
    [47]P. Wang, J. P. Li, Y. C. Guo, Z. Yang, and J. L. Wang, Ceramic coating formation on high Si containing Al alloy by PEO process, Surface Engineering, 32 (2016) 428-434.
    [48]M. Kalisz, M. Grobelny, M. Mazur, D. Wojcieszak, M. Świniarski, M. Zdrojek, J. Domaradzki, and D. Kaczmarek, Mechanical and electrochemical properties of Nb2O5, Nb2O5:Cu and graphene layers deposited on titanium alloy (Ti6Al4V), Surface and Coatings Technology, 271 (2015) 92-99.
    [49]L. Oakes, A. P. Cohn, A. S. Westover, and C. L. Pint, Electrophoretic stabilization of freestanding pristine graphene foams with carbon nanotubes for enhanced optical and electrical response, Material Letters, 159 (2015) 261-264.
    [50]W. Yu, L. Sisi, Y. Haiyan, and L. Jie, Progress in the functional modification of graphene/graphene oxide: A review, RSC advances, 10(26) (2020) 15328-15345.
    [51]碳化硼介紹。維基百科,取自https://zh.wikipedia.org/wiki/碳化硼。
    [52]立方氮化硼介紹。中文百科全書,取自https://www.newton. com.tw/wiki/立方氮化硼/10993927。
    [53]王虹斌,方志剛,蔣百靈,微弧氧化技術及其在海洋環境中的應用,國防工業出版社,北京,(2010) 6-17。
    [54]Y. Zeng, F. Chen, Y. G. Lei, and T. J. Wei, Tribological properties of containing carbon micro arc oxidation ceramic coating on pure Mg, China Surface Engineering, 28 (2015) 84-89.
    [55]李克讓,磨潤工程,三民書局股份有限公司,臺北市,(1987) 40-62。
    [56]G. H. Lv, H. Chen, W. C. Gu, W. R. Feng, L. Li, E. W. Niu, X. H. Zhang, and S. Z. Yang, Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of Alumina PEO coatings, Current Applied Physics, 9 (2009) 324-328.
    [57]胡啟章,電化學原理與方法,五南圖書出版公司,臺北市,(2002) 74。
    [58]A. Fattah-alhosseini, and R. Chaharmahali, Enhancing corrosion and wear performance of PEO coatings on Mg alloys using graphene and graphene oxide additions: A review, FlatChem, 27 (2021) 100241.
    [59]W. Liu, C. Blawert, M. L. Zheludkevich, Y. Lin, M. Talha, Y. Shi, and L. Chen, Effects of graphene nanosheets on the ceramic coatings formed on Ti6Al4V alloy drill pipe by plasma electrolytic oxidation, Journal of Alloys and Compounds, 789 (2019) 996-1007.
    [60]A. B. Khiabani, S. Ebrahimi, and B. Yarmand, Highly corrosion protection properties of plasma electrolytic oxidized titanium using rGO nanosheets, Applied Surface Science, 486 (2019) 153-165.
    [61]X. Sun, Z. Jiang, S. Xin, and Z. Yao, Composition and mechanical properties of hard ceramic coating containing α-Al2O3 produced by microarc oxidation on Ti-6Al-4V alloy, Thin Solid Films, 471 (2005) 194-199.
    [62]N. Ao, D. Liu, S. Wang, Q. Zhao, X. Zhang, and M. Zhang, Microstructure and tribological behavior of a TiO2/hBN composite ceramic coating formed via microarc oxidation of Ti-6Al-4V alloy, Journal Materials Science & Technology, 32 (2016) 1071-1076.
    [63]李輝煌,田口方法-品質設計的原理與實務,高立圖書股份有限公司,臺北市,(2008)。

    QR CODE