簡易檢索 / 詳目顯示

研究生: 張義捷
Amadou Jallow
論文名稱: Numerical Study of Long-term Settlement Induced in Shield Tunneling
Numerical Study of Long-term Settlement Induced in Shield Tunneling
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 歐章煜
Chang-Yu Ou
林宏達
Horn-Da Lin
周宏仁
Adam Chow
黃南輝
Richard Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 118
中文關鍵詞: Long-term SettlementNumerical AnalysisCreepConsolidationTime-dependentEPB Shield Tunneling
外文關鍵詞: Long-term Settlement, Numerical Analysis, Creep, Consolidation, Time-dependent, EPB Shield Tunneling
相關次數: 點閱:193下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The construction of a tunnel using EPB TBM generally induces short-term and long-term ground surface settlement. The short-term settlement is mainly caused by the relief of the in situ ground stress. Long-term settlement can be induced by the equilibration of the stresses and pore pressures in the clayey layer around the tunnel, which is associated with a new drainage condition imposed by the tunnel. It can also be caused by the creep behavior of the soft soil around the tunnel or in the soil layers. In this study, a series of FE analysis were conducted using PLAXIS 3D 2017 to investigate the long-term settlement induced in EPB shield tunneling cases in Taipei Mass Rapid Transit System (Taipei MRT). Various simulation were executed assessing the impact of consolidation on long-term settlement using Soft Soil (SS) and Hardening Soil Small-strain (HSS) Model. Simulation to assess the impact of the creep behavior of the soil on the long-term settlement was also executed using the Soft Soil Creep (SSC) Model. The constructions of the 2nd tunnel was simulated to investigate the increment of the ground surface settlement after the passage of the 2nd tunnel (Uptrack). In accordance with excavation sequence, the 2nd tunnel passes the monitoring section around the 300th day after the beginning of the tunnel construction. The volume loss is calculated via back analysis from the measured field data. The computed surface settlements were compared to the field measurement. From this study, it was found that the creep behavior of clay plays a vital role in quantifying the long-term surface settlement


    The construction of a tunnel using EPB TBM generally induces short-term and long-term ground surface settlement. The short-term settlement is mainly caused by the relief of the in situ ground stress. Long-term settlement can be induced by the equilibration of the stresses and pore pressures in the clayey layer around the tunnel, which is associated with a new drainage condition imposed by the tunnel. It can also be caused by the creep behavior of the soft soil around the tunnel or in the soil layers. In this study, a series of FE analysis were conducted using PLAXIS 3D 2017 to investigate the long-term settlement induced in EPB shield tunneling cases in Taipei Mass Rapid Transit System (Taipei MRT). Various simulation were executed assessing the impact of consolidation on long-term settlement using Soft Soil (SS) and Hardening Soil Small-strain (HSS) Model. Simulation to assess the impact of the creep behavior of the soil on the long-term settlement was also executed using the Soft Soil Creep (SSC) Model. The constructions of the 2nd tunnel was simulated to investigate the increment of the ground surface settlement after the passage of the 2nd tunnel (Uptrack). In accordance with excavation sequence, the 2nd tunnel passes the monitoring section around the 300th day after the beginning of the tunnel construction. The volume loss is calculated via back analysis from the measured field data. The computed surface settlements were compared to the field measurement. From this study, it was found that the creep behavior of clay plays a vital role in quantifying the long-term surface settlement

    ABSTRACT ....................................................................................................................... i ACKNOWLEDGEMENTS .............................................................................................. ii TABLE OF CONTENT ................................................................................................... iii LIST OF TABLES ........................................................................................................... vi LIST OF FIGURES ........................................................................................................ vii NOMENCLATURE ........................................................................................................ xi INTRODUCTION................................................................................... 1 Research background .............................................................................................. 1 Research objectives ................................................................................................. 2 Thesis structure ........................................................................................................ 2 LITERATURE REVIEW ........................................................................ 4 Introduction ............................................................................................................. 4 Tunnel construction ................................................................................................. 4 Earth pressure balance (EPB) shield tunneling ........................................... 5 Stability during tunneling ........................................................................................ 6 Short-term ground surface deformation induced in tunneling ................................ 7 Empirical methods .................................................................................... 10 Analytical methods ................................................................................... 12 Long-term ground surface deformation induced in tunneling ............................... 15 Consolidation induced settlement ............................................................. 15 Creep-induced settlement ......................................................................... 18 Soil constitutive models ........................................................................................ 20 The hardening soil and hardening soil with small-strain model ............... 20 Soft soil and the soft soil creep model ...................................................... 24 Summary ............................................................................................................... 28 MECHANISM OF CREEP INDUCED DEFORMATION .................. 30 Introduction ........................................................................................................... 30 Determination of soil input parameters ................................................................. 30 Soft soil creep model for modeling soil .................................................... 30 Undrained and drained creep-induced deformation .............................................. 31 Undrained creep-induced deformation ..................................................... 31 Drained creep-induced deformation ......................................................... 34 iv Creep deformation and effective stress correlation ............................................... 36 Consolidation in SSC - model ............................................................................... 39 Validation of the application OCR in SSC - model .............................................. 45 Discussion ............................................................................................................. 49 THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF SHIELD TUNNELING .................................................................................................. 51 Introduction ........................................................................................................... 51 Project description ................................................................................................. 51 TBM and tunnel introduction ................................................................... 51 Geological data ......................................................................................... 52 Monitored section ..................................................................................... 55 Tunneling sequence and TBM pressures .................................................. 56 Analysis Methodology .......................................................................................... 58 Determination of soil input parameters .................................................... 58 4.3.1.1 The hardening soil and hardening soil with small-strain model . 58 4.3.1.2 Soft soil and the soft soil creep model ........................................ 61 Determination of structural parameters .................................................... 62 Determination of soil-structure interface .................................................. 63 Evaluation of volume loss ......................................................................... 64 Determination of TBM pressure ............................................................... 66 4.3.5.1 Face and Grouting pressure ........................................................ 66 4.3.5.2 Hydraulic jacking pressure ......................................................... 66 Model geometry, mesh, boundary conditions and analysis sequence ................... 66 Analysis of tunneling procedure ............................................................................ 68 Initial stresses ............................................................................................ 68 Definition of TBM initial position and tail gap simulation ...................... 69 Short-term analysis (Plastic calculation) .................................................. 70 Long-term analysis ................................................................................... 72 4.5.4.1 Settlement after 10 days .............................................................. 73 4.5.4.2 Settlement after 90 days .............................................................. 75 4.5.4.3 Settlement after 365 days ............................................................ 77 Discussion ............................................................................................................. 81 v Summary ............................................................................................................... 83 PARAMETRIC STUDIES.................................................................... 85 Introduction ........................................................................................................... 85 Initial effective stress on creep induced settlement ............................................... 85 OCR-value equal to 1.3 for deep clay ....................................................... 86 OCR-value equal to 1.5 for deep clay ....................................................... 89 OCR-value equal to 1.7 for deep clay ....................................................... 92 Role of permeability on the long-term creep induced settlement.......................... 95 With 6 2 10 / sec  k   cm for clayey soil layers ......................................... 95 With 7 2 10 / sec  k   cm for clayey soil layers ......................................... 97 With 8 2 10 / sec  k   cm for clayey soil layers ........................................ 99 Impact of creep parameter on the long-term creep induced settlement .............. 101 The thickness of clayey and the long-term creep induced settlement ................. 104 Short-term analysis results ...................................................................... 105 Long-term analysis results ...................................................................... 106 5.5.2.1 Settlement after 10 days ............................................................ 106 5.5.2.2 Settlement after 90 days ............................................................ 108 5.5.2.3 Settlement after 365 days .......................................................... 109 Discussion ........................................................................................................... 111 CONCLUSION AND FUTURE WORK............................................ 113 Introduction ......................................................................................................... 113 Major conclusion ................................................................................................. 113 Recommendation for future research .................................................................. 114

    REFERENCES
    Addenbrooke, T.I., (1996). Numerical analysis of tunnels in stiff clay. PhD thesis,
    Imperial College, University of London, UK.
    Atkinson, J., & Cairncross, A. (1973). “Collapse of a shallow tunnel in a Mohr-Coulomb
    material.” Paper presented at the proceedings of the Symposium of the Role of
    Plasticity in Soil Mechanics, Cambridge, UK.
    Atkinson, J.H. and Mair, R.J., (1981). Soil mechanics aspects of soft ground tunneling.
    Ground Engineering, 14(5).
    Attewell, P.B. and Woodman, J.P., (1982). Predicting the dynamics of ground settlement
    and its derivatives caused by tunneling in soil. Ground engineering, 15(8).
    Attewell, P.B., Yeates, J. and Selby, A.R., (1986). Soil movement induced by tunneling
    and their effect on pipelines and structures. Blackie, Glasgow.
    Bartlett, J.V and Bubbers, B.L., (1970). Surface movements caused by bored tunneling.
    In Conference on Subway Construction (Vol. 539). sI]: Budapest-Balatofured.
    Bowers, K. H., Hiller, M. D. & New, B. M. (1996). Ground movement over three years
    at Heathrow Express trial tunnel. Proceedings of the International Symposium on
    Geotechnical Aspects of Underground Construction in Soft Ground, London, pp.
    557–562.
    Broms, B. B., & Bennermark, H. (1967). “Stability of clay at vertical openings”. Journal
    of Soil Mechanics & Foundations Div., ASCE, 193, SM1, 71-94.
    Brinkgreve, R. et al. (Eds.), 2010. Plaxis 2D 2010 – User’s Manual. Plaxis BV,
    Netherlands.
    Brinkgreve, R., Engin E, Swolfs WM (2017) Plaxis 3D 2013 – User’s Manual. Delft,
    Netherlands, PLAXIS.
    Buismann, K., 1936. Results of long duration settlement test. In Proceedings 1st
    International Conference on Soil Mechanics and Foundation Engineering, Volume
    1, Cambridge, Massachusetts, pp. 103-107.
    Butterfield, R., 1979. A natural compression law for soil (an advance on e-log p’)
    (technical note). Geotechnique 29(4), 469-480.
    Calvello, M., Finno, R., 2004. Selecting parameters to optimize in model calibration by
    inverse analysis. Comp. Geotech. 31, 410–424.
    Chi, S.Y., Chern, J.C., Lin C.C., 2001. Optimized back-analysis for tunneling-induced
    ground movement using equivalent ground loss model. Tunn. Undergr. Sp.
    Technol. 16, 159-165.
    116
    Clough, G. W., & Schmidt, B. (1981). “Design and performance of excavations and
    tunnels in soft clay”. In Soft Clay Engineeing, Elsevier, 569-643.
    Cording, E.J., Hansmire, W.H., 1975. Displacement around soft ground tunnels. General
    Report: Session IV, Tunnels in soil, Proceedings of the 5th Pan American
    Conference on Soil Mechanics and Foundation Engineering, pp. 571-632.
    Craig, R.N. and Muir Wood, A. M., (1978). A review of tunnel lining practice in the
    United Kingdom. Supplm. 335, Transport and road Research Laboratory.
    Davis, E., Gunn, M., Mair, R., & Seneviratine, H. (1980). “The stability of shallow
    tunnels and underground opening in cohesive material”. Geotechnique, 30(4), 397-
    416.
    Fattah, M.Y., Shlash, K.T. and Salim, N.M., (2013). Prediction of settlement trough
    induced by tunneling in cohesive ground. Acta Geotechnica, 8(2), pp. 167-179.
    Guglielmetti, V., Grasso, P., Mahtab, A., & Xu, S. (Eds.). (2008). “Mechanized tunneling
    in urban areas: design methodology and construction control”. Taylor and Francis.
    Ch. 5.
    Janbu, N. (1985). 25th rankine lecture: Soil models in offshore engineering. Geotechnique
    35(3), 239-281.
    Khoiri, M., Ou, C.Y. (2013). Evaluation of deformation parameter for deep excavation in
    sand through case histories. Computer and Geotechnics, 47(1), 57 – 67.
    Leca, E., Leblais, Y. and Kuhnhenn, K., (2000). Underground works in the soils and soft
    rocks tunneling. In ISRM International Symposium. International Society for Rock
    Mechanics.
    Lee, S.H.H., 1990. Regression models of shear wave velocity. J. Chinese Eng., 13 (5),
    519-532.
    Lee, K.M., Rowe, R.K., 1991. An analysis of three-dimensional ground movement: the
    Thunder Bay tunnel. Can. Geotech. J. 28 (1), 25-41.
    Lee, K.M., Rowe, R.K., Lo, KY., 1992. Subsidence owing to tunneling. I: Estimating the
    gap parameter. Can. Geotech. J. 29, 929-940.
    Lim, A., Ou, C.Y., Hsieh, P.G., 2010. Evaluation of clay constitutive models for analysis
    of deep excavation under undrained conditions. J. GeoEng. 5, 9-20.
    Lim, A., Ou, C.Y., 2017. Stress paths in deep excavation under undrained conditions and
    its influence on deformation analysis. Tunn. Undergr. Sp. Technol. 63, 118-132.
    Lin, H. D., Wang, C. C. (1998). Stress-strain-time function of clay. J. Geotech.
    Geoenviron. Eng, ASCE, 124(4): 289-296.
    117
    Kuesel, T.R., King, E.H, & Bickel, J. O. (2012). Tunnel engineering handbook. Springer
    Science & Business Media.
    Mair, R.J. (1979). “Centrifugal modelling of tunnel construction in soft clay”. PhD thesis.
    University of Cambridge, Cambridge, UK.
    Mair, R.J., 2008. Tunnelling and geotechnics: new horizons. Geotechnique 58 (9), 695-
    736.
    Mair, R.J., Taylor, R.N., 1997. Bored tunneling in urban environment: state-of-the-art
    report and theme lecture. Proc. 14th Int. Conf. Soil Mech. Found. Engng, Hamburg
    4, 2353-2385.
    Martos, F. (1958). “Concerning an approximate equation of the subsidence trough and its
    time factors”. In Internation strata control congress, Leipzig, 191-205.
    Ng, C.W., Simons, N.E. and Menzies, B.K., (2004). A short course in soil-structure
    engineering of deep foundations, excavations and tunnels. Thomas Telford.
    O’Reilly, M.P., New, B.M., 1982. Settlements above tunnels in the United Kingdom:
    their magnitude and prediction. In: Tunnelling ’82: 3rd International Symposium,
    Brighton, East Sussex, United Kingdom, pp. 225-289.
    Ou, C.Y., Chin, C.K., Liu, C.C., 2009. Development of time dependent stress-strain
    simulation of clay. Journal of Mechanics. 25 (1), pp. 27-40.
    Ou, C.Y. (2006) Deep Excavation: Theory and Practice. Taylor and Francis: London
    Ou, C.Y., Chin, C.K., Liu, C.C., 2011. Anisotropic viscoplastic modeling of ratedependent
    behavior of clay. Int. J. Numer. Anal. Meth. Geomech. 35 (11), pp. 1189
    -1206.
    Peck, R.B., 1969. Deep excavation and tunneling in soft ground. Proceedings of 7th
    International Conference Soil Mechanics and Foundation Engineering. Mexico,
    State of the Art Volume, pp. 225-290.
    Romo, M.P. and Diaz, M., (1981). Face stability and ground settlement in shield
    tunneling. In Proceedings of the 10th International conference on Soil Mechanics
    and Foundation Engineering, Stockholm.
    Rowe, R.K., Lo, K.Y., Kack, G.J., 1983. A method of estimating surface settlement above
    tunnels construction in soft ground. Can. Geotech. J. 20 (8), 11-22.
    Sagaseta, C., 1987. Analysis of undrained soil deformation due to ground loss.
    Geotechnique 37 (3), 301-320.
    Sagaseta, C., 1988. Discussion on: Segeseta, C.: Analysis of undrained soil deformation
    due to ground loss. Author’s replay to B. Schmidt. Geotechnique 38 (4), 647-649.
    Schanz, T., Vermeer, P.A., Bonnier, P.G., 1999. The hardening soil model: formulation
    and verification. In: Beyond 2000 in Computational Geotechnics – 10 Years Plaxis.
    Rotterdam, pp. 281–296.Senevirtne, H. (1979). “Deformation and pore-pressures
    118
    around model tunnels in soft clay”. Ph.D. thesis, University of Cambridge,
    Cambridge, UK.
    Shin, J.H., Potts, D.M., 2003. Time-base two-dimensional modelling of NATM
    tunneling. Can. Geotech. J. 39 (3), 710-724.
    Shin, J.H., Addenbrooke, T.I., Potts, D.M., 2002. A numerical study of the effect of
    groundwater movement on the long-term tunnel behavior. Geotechnique 58 (6),
    391-403.
    Surarak C., Likitlersuang S., Wanatowski D., Balasubramaniam A., Oh, E., Guan H.
    (2012). Stiffness and strength parameter for hardening soil model of soft and stiff
    Bangkok Clays. Soils and Foundations, 52(4), 682-697.
    Stallebrass, S.E., Jovicic, V., Taylor, R.N. (1994). Short-term and long-term settlements
    around tunnel in stiff clay. In Numerical Methods in Geotechnical Engineering (ed.
    I. M. Smith), pp. 235-240. Rotterdam, the Netherland: Balkema.
    Teng, F.C., 2010. Prediction of Ground Movement Induced by Excavation Using the
    Numerical Method with Consideration of Inherent Stiffness Anisotropy
    (Dissertation). National Taiwan University of Science and Technology.
    Uriel, A.O., Segeseta, C., 1989. Selection for design parameters for underground
    construction. In Proceedings of the 2nd Conference on Ground Movement and
    Structures. Cardiff, Wales. Pp. 331-344.
    Vorster, T. E. B., Klar, A., Soga, K. & Mair, R. J. (2005). Estimating the effect of
    tunneling on existing pipelines. J. Geotech. Geoenviron. Engng ASCE 131, No. 11,
    1399–1410.
    Wang, Z., Wong, R.C.K., Li, S., Qiao, L., 2012. Finite element analysis of long-term
    surface settlement above a shallow tunnel in soft ground. Tunn. Undergr. Sp. Technol.
    30, 85-92.
    Ward, W., & Pender, M. (1981). “Tunneling in soft ground: general report”. Paper
    presented at the Proceeding of the 10th International Conference of Soil Mechanics
    and Foundation Engineering, Stockholm.
    Wong, R.C.K., Kaiser, P.K., 1991. Performance assessment of tunnels in cohensionless
    soils. J. Geotech. Eng. 117(2), 1880-1901.

    QR CODE