簡易檢索 / 詳目顯示

研究生: 班達廷
Mohammad - Badaruddin
論文名稱: 水蒸氣對低碳鋼與熱浸鋁化低碳鋼高溫氧化之影響
Effects of Water-Vapour on the High Temperature Oxidation of Low Carbon Steel and Hot-Dip Aluminized Steel
指導教授: 王朝正
C.J. Wang
口試委員: 朱瑾
J.P. Chu
鄭偉鈞
W.C. Cheng
開物
Wu Kai
李志偉
J.W. Lee
林招松
C.S. Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 177
中文關鍵詞: low carbon steeloxidation resistancecolumnar structurepyramidal graincarbon deposition aluminized steelcoatingwater-vapour
外文關鍵詞: low carbon steel, oxidation resistance, columnar structure, pyramidal grain, carbon deposition aluminized steel, coating, water-vapour
相關次數: 點閱:279下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • The oxidation kinetics of low carbon steel was studied in dry air, mixed steam, pure steam, and ethanol at the temperature range of 700800 °C after 49 h exposure at atmospheric pressure. Similar parabolic oxidation kinetics is observed for the steels exposed to dry air and mixed steam. The mass-gain data on the steel exposed to ethanol at 800 °C is similar to the mass-gain data on the steels exposed to pure steam at 700–800 °C having two stages of parabolic kinetics. The rates of steel oxidized in mixed steam at 700, 750 and 800 °C rises by a factor of 10.06, 2.58, and 2.84, respectively. The rate of steels oxidized in pure steam at 700, 750 and 800 °C rises by a factor of 4.64, 2.91, and 2.59, respectively and in ethanol the rate was respectively increased to 7.71, 1.37, and 2.08 at 700, 750 and 800 °C with respect to those oxidized in dry air. The activation energy is found to be lower (200 kJ/mol) in steel oxidized in ethanol than those of steels oxidized in dry air (318 kJ/mol), mixed steam (206 kJ/mol) and pure steam (266 kJ/mol). The carbon deposition in the magnetite layer gave rise to the breakaway oxidation in ethanol oxidation at 800 °C after about 9 h. In their cross sections, the scale has a columnar structure and appears two layers with a thin outer magnetite layer and an inner wustite layer in dry air and mixed steam whereas in pure steam and ethanol the scale structures show a thick magnetite layer and the thin wustite layer revealed very porous.
    Low carbon steel, AISI 1005, was coated by hot-dipping into a molten Al-10%Si bath at 700 °C for 18 s. After hot-dipping treatment, the coating layers consisted of Al, Si, FeAl3, τ5-Fe2Al8Si, and Fe2Al5. After oxidation tests, the FeAl3 and τ5-Fe2Al8Si phases were completely transformed to the Fe2Al5 and FeAl2 in the alumnide layer, whereas the FeAl formed near the steel substrate was due to Fe-atoms diffusing into the Fe2Al5 layer when the time and temperature were increased.
    Hot-dip aluminized AISI 1005 steel was isothermally oxidized at temperatures varying from 700 to 800 °C in air, mixed steam and pure steam at atmospheric pressure. The high-temperature steam resistance of aluminized steel depended on the oxidation temperature. It was shown that in atmospheres that contain water-vapour, the alumina formed on the surface coating had less protection than in a dry air atmosphere. The presence of water-vapour enhanced Fe-ion transport processes in the alumina due to the incorporation of hydrogen. The rapid growth of sporadic iron oxide nodules on the coating surface and at the interface was accelerated by rapid outward diffusion of Fe-ions; high-pressure H2 from water-vapour dissociation; and crack formation in the aluminide layer. Thus the oxidation rate was increased, resulting in a substantial mass-gain with temperature and time. In addition, the aluminum exhibited a greater tendency to become internally oxidized in a low pO2-steam than in a high pO2-steam.
    Keywords: low carbon steel; oxidation resistance; columnar structure; pyramidal grain; carbon deposition; aluminized steel; coating; water-vapour.

    Abstract iii Acknowledgements v Table of Contents vi List of Tables vii List of Figures ix Chapter 1: Introduction 1 Chapter 2: Literature Review 3 2.1 Fundamental of oxidation 3 2.1.1 Oxidation of iron 3 2.1.2 Characteristic of aluminum oxide 7 2.1.3 Oxidation kinetics 9 2.2 Hot-Dip aluminized tteel 11 2.2.1 Parameters of hot-dipping 11 2.2.2 Growth of Fe-Al intermetallics compounds 12 2.2.3 Growth of Fe–Al–Si intermetallics compounds 19 2.3 Effect of water-vapour 24 2.3.1 Water-vapour effect on iron oxide growth 24 2.3.2 Water-vapour effect on alumina growth 29 Chapter 3: Experimental Procedure 38 3.1 Preparations of specimens 38 3.2 Preparation for aluminizing specimens 39 3.3 Isothermal oxidation tests 40 3.4 Characterization of specimens 42 3.4.1 Metallographic examination 42 3.4.2 Scanning electron microscopy 43 3.4.3 X-ray diffraction examinations 43 Chapter 4: Results and Discussion 44 4.1 Oxidation of low carbon steel in water-vapour at elevated temperatures 44 4.1.1 Oxidation kinetics 45 4.1.2 Scale structure and XRD examinations 57 4.1.2.1 Steel oxidized in dry air 57 4.1.2.2 Steel oxidized in N2–H2O (pure steam) with low-pO2 63 4.1.2.3 Steel oxidized in water-vapour with high-pO2 69 4.1.2.4 Steel oxidized in H2O–CO2 mixtures (ethanol Burning) 76 4.1.3 Mechanisms of oxidation in Air–H2O mixtures 87 4.1.4 Mechanisms of oxidation in H2O with low-pO2 90 4.2 High temperature oxidation of hot-dipping Al-Si coating on low carbon Steel exposed to ethanol, water-vapor, and air at 700 °C 93 4.2.1 Microstructural examinations and phase constituents 93 4.2.2 Oxidation resistance 107 4.3 High temperature oxidation resistance of aluminized steel exposed to water-vapour 111 4.3.1 Effect of water-vapour with respect to oxidation kinetics 112 4.3.2 Metallographic examination as-coated specimen 119 4.3.3 Metallographic and phase constituents of aluminized specimens after oxidation 122 4.3.4 Mechanism of iron oxide nodules formation 137 4.3.5 Effect of water-vapour on the aluminum oxide growth 144 Chapter 5: Conclusion and Future Works 147 5.1 Conclusion 147 5.2 Future works 150 References 152 Publications 161 Vita 162

    [1] A. Rahmel and J. Tobolski, Corros. Sci. 5 (1965), p. 333.
    [2] C.W. Tuck, M. Odgers and K. Sachs, Corros. Sci. 9 (1969), p. 271.
    [3] M.J. Monteiro, S.R.J. Saunders, F.C.Rizzo, Oxid. Met. DOI: 10.1007/s11085-010-9220-8 (2010), p. 1.
    [4] L. Sánchez, F.J. Bolívar, M.P. Hierro and F.J. Pérez, Thin Solid Films 517 (2009), p. 3292.
    [5] S. Taniguchi, N. Hongawara and T. Shibata, Mater. Sci. Eng. A307 (2001), p. 107.
    [6] A. Zeller, F. Dettenwanger and M. Schütze, Intermetallics 10 (2002), p. 59.
    [7] M.P. Braddy, Y. Yamamoto, M.L. Santella and L.R. Walker, Oxid. Met. 72 (2009), p. 311.
    [8] A. Yamauchi, K. Kurokawa, and H. Takahashi, Oxid. Met. 59 (2003), p. 517.
    [9] Asteman, H., J. E. Svensson, and L.G. Johansson, J. Elec. Soc. 151 (2004), p. B141.
    [10] S.C. Deevi and V.K. Sikka, Intermetallics 4 (1996), p. 357.
    [11] N.S. Stoloff, Mat Sci Eng. A258 (1998), p. 1.
    [12] C.T. Liu, E.P. George, P.J. Maziasz and J.H. Schneibel, Mater. Sci. Eng. A258 (1998), p. 84.
    [13] F. Lang, Z. Yu, S. Gedevanishvili, S.C Deevi and T. Narita, Intermetallics 12 (2004), p. 451.
    [14] Dryepondt, S. and B. A. Pint, Mater. Sci. Eng. A 497 (2008), p. 224.
    [15] C.J. Wang, and S.M. Chen, Surf. Coat. Technol. 201 (2006), p. 3862.
    [16] C.J. Wang and C.C. Li, Surf. Coat. Technol. 177–178 (2003), p. 32.
    [17] C.J. Wang, J.W. Lee and T.H. Twu, Surf. Coat. Technol. 163–164 (2003), p. 37.
    [18] R.W. Richards, R.D. Jones, P.D. Clements and H. Clarke, Int. Mater. Rev. 39 (1994), p. 191
    [19] G. Eggeler, H. Vogel, J. Friedrich and H. Kaesche. Pract. Met. 22 (1985), p. 163.
    [20] M.A. Shady, A.R. El-Sissi, A.M. Attia, N.A. El-Mahallawy, M.A. Taha and W. Reif, J. Mater. Sci. Lett. 15 (1996), p. 1032.
    [21] H. Glasbrenner and O. Wedenmeyer, J. Nucl. Mater. 257 (1998), p. 274.
    [22] G.P. Cammarota, A. Casagrande and G. Sambogna, Surf. Coat. Technol. 201 (2006), p. 230.
    [23] A.G. Hameed and U. H. Faiz, Mater. Sci. Eng. A472 (2008), p. 157.
    [24] J.L. Song, S.B Lin, C.L. Yang and C.L Fan, J. Alloys Compd. 488 (2009), p. 217.
    [25] A. Bahadur and O.N. Mohanty, Mater. Trans. JIM 31 (1990), p. 943.
    [26] W.J. Cheng and C.J. Wang, Surf. Coat. Technol. 204 (2009), p. 824.
    [27] K. Żaba, Archives of Civil and Mechanical, Poland, IX (2009), p. 145.
    [28] K.S. Lee, K.H. Oh, W.W. Park and H.Y. Ra, Scr. Mat. 39 (1998), p. 1151.
    [29] C. Badini and F. Laurella, Surf. Coat. Technol. 135 (2001), p. 291.
    [30] D.B. Lee, G.Y. Kim, J.G. Kim, Mat. Sci. Eng. A339 (2003), p. 109.
    [31] H.T. Abuluwefa, R.I.L. Guthrie and F. Ajersch, Met. Mater. Trans. A 28A (1997), p. 1633.
    [32] M. Torresa and R. Colas, J. Mater. Process. Technol. 105 (2000), pp. 258.
    [33] F. Matsuno, Trans. ISIJ 20 (1980), p. 413.
    [34] N. Birks, G.H. Meier, F. Pettit, Introduction to The High-temperature Oxidation of Metals (second ed.), Cambridge University Press, Cambridge, (2005).
    [35] J.S. Sheasby, W.E. Boggs and E.T. Turkdogan, Metal Sci. 18 (1984), p. 127
    [36] W. Schwenk and A Rahmel, Oxid. Met. 25 (1986), p. 293.
    [37] E. Dorre, H. Hubner, Alumina, Springer Verlag, (1984).
    [38] M. Gell, K. Vaidyanathan, B. Barber, J. Cheng, E. Jordan, Met. & Mat. Trans. A, 30A (1999), p. 427.
    [39] M.C. Maris-Sida, Ph.D thesis, University of Pittsburgh, (2004), p.19.
    [40] H. A. Wang and F. A. Kroger, J. Amer. Cer. Soc. 63 (1980), p. 613.
    [41] M. Le Gall, A.M. Huntz, B. Lesage, C. Monty and J. Bernardini, J. Mater. Sci. 30 (1995), pp. 201.
    [42] K. Messaoudi, A.M. Huntz and B. Lesage, Mater. Sci. Eng. A 247 (1998), p. 248.
    [43] P. Kofstad. Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides, John Wiley & Sons, Inc, New York (1972).
    [44] M. Kohono, S. Ishikawa, K. Ishii and S. Satoh, Cambridge, UK, 16–18 Sept. In: Microscopy of Oxidation-3 (1996), p. 55.
    [45] R. Molins, A. Germidis and E. Andrieu, Microscopy of Oxidation-3, Cambridge, UK, 16–18 Sept (1996), p. 3.
    [46] K.S. Lee, K.H. Oh, W.W. Park and H.Y. Ra, Scr. Mat. 39 (1998), p. 1151.
    [47] C. Badini and F. Laurella, Surf. Coat. Technol. 135 (2001), p. 291.
    [48] A.S. Khanna, High-temperature Oxidation and Corrosion, ASM International, OH (2002).
    [49] O. Kubaschewski and B.E. Hopkins, Oxidation of Metals and Alloys (second ed.), Academic Press Inc., New York (1962).
    [50] P. Kofstad, High-temperature Corrosion, Elsevier Applied Science Publishers Ltd., New York (1988).
    [51] A. Bruckman and G. Simkovich, Corros. Sci. 12 (1972), p. 595.
    [52] S.K. Roy, A. Auddy and S.K. Bose, Reactivity of Solids 6 (1989), p. 301.
    [53] T.P. Bagchi and P.K. Sen, Thermochimica Acta 51 (1981), p. 175.
    [54] B. Pieraggi, Oxid. Met. 27 (1987), p. 177.
    [55] F. Barbier, D. Manuelli and K. Bouche, Script. Mater. 36 (1997), p. 425.
    [56] P.R. Calvillo, L. Suarez and Y. Houbaert, Def. Diffs. For. 297-301 (2010), p. 1042.
    [57] S. Kobayashi and T. Yakou, Mater. Sci. Eng. A338 (2002), p. 44.
    [58] R. Streiff, J. Phys. IV 3 (1993), p. 17.
    [59] W. Deqing, S. Ziyuan and Z. Longjiang, Appl. Surf. Sci. 214 (2003), p. 304.
    [60] S. H. Hwang, J. H. Song and Y.S. Kim, Mater. Sci. Eng. A390 (2005), p. 437.
    [61] S. Koda, S. Morozumi and A. Kanai, J. Jpn. Inst. Metals 26 (1962), p. 764.
    [62] M.V Akdeniz, A.O Mekhrabov and T. Yilmaz, Scri. Metall. Mater. 31 (1994), p. 1723.
    [63] K. Bouché, F. Barbier and A. Coulet, Mater. Sci. Eng. A249 (1998), p. 167.
    [64] A. Bouayad, Ch. Gerometta, A. Belkebir and A. Ambari, Mater. Sci. Eng. A363 (2003), p. 53.
    [65] A Jankowski, J. Ferreira and J. Hayes, Thin Solid Film 491 (2005) 61.
    [66] S.C. Kwona and J.Y. Lee, Can. Metall. Q. 20 (1981), p. 351.
    [67] F. Lang, Z. Yu, S. Gedevanishvili, S.C Deevi and T. Narita, Intermetallics 11 (2003), p. 697.
    [68] H. Glasbrenner, K. S. Fechner and J. Konys, Fusion Eng. 51–52 (2000), p. 105.
    [69] Metals Handbook, Vol. 63, 10th Edition, ASM International (1992).
    [70] Bulletin of Binary Phase Diagrams, ASM International (1994).
    [71] H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari and J. Hejazi, J. Mater. Proc. Technol. 124 (2002), p. 345.
    [72] G. Neumann, in: H. Mehrer (Ed.), Diffusion in Solid Metals and Alloys, Numerical Data and Functional Relationships in Science and Technology, Springer 261 (990), p. 152.
    [73] A.D. Le Claire, in: H. Mehrer (Ed.), Diffusion in Solid Metals and Alloys, Numerical Data and Functional Relationship in Science and Technology, Springer 26 (1990), p. 129.
    [74] V.N. Yeremenko, Y.V. Natanzon and V.I. Dybkov, J. Mater. Sci. 16 (1981), p.1748.
    [75] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprza, Binary alloy phase diagrams, ASM International, Materials Park, OH (1990), p. 147.
    [76] C.G. Mckamey In: N.S. Stoloff and V.K. Sikka, Editors, Physical metallurgy and processing of intermetallic compounds, Chapman Hall, New York (1996), p. 351.
    [77] H. Mehrer, Mater. Trans. JIM 37 (1996), p. 1259.
    [78] Y.A. Chang, L.M. Pike, C.T Liu, A.R Bilbrey and D.S. Stone. Intermetallics 1 (1993), p. 107.
    [79] H. Xiao and I. Baker. Scripta Metall. Mater. 28 (1993), p. 1411.
    [80] H. Xiao and I. Baker. Acta Metall. 43 (1995), p. 391.
    [81] D.G. Morris and M.A. Muňoz–Morris, Intermetallics 13 (2005),p. 1269.
    [82] T. Maitra and S. P. Gupta, Mater. Charac. 49 (2002), p. 293.
    [83] N.A.EI-Mahallawy, M.A. Taha, M.A. Shady, A.E.EI-Sissi, A. N. Attia, and W. Reif, Mater. Sci. Technol. 13 (1997), p. 832.
    [84] G. Eggeler, W.Auer, H. Kaesche, J. Mater. Sci. 21 (1986), p 3348.
    [85] N. Komatsu, M. Nakamura and H. Fujita, J. Jpn. Inst. Met. 45 (1981), p. 416.
    [86] M.V. Akdeniz, O. Amdulla, Mekhrabov and T. Yilmaz, Scrip. Metallur. et Materia. 31 (1994), p. 1723.
    [87] N. Pavel, M. Alena, V. Milena, S. Miroslav, S. Jan, V. Dalibor and W. Katerina, J. Alloys Compd. 493 (2010), p. 81.
    [88] Y. Zhang, Y. Liu, Y. Han, C. Wei and Z. Gao, J. Alloys Compd. 473 (2009), p. 442.
    [89] L.A. Jacome, S. Weber, A. Leitner, E. Arenholz, J. Bruckner, H. Hackl and A.R. Pyzalla, Adv. Eng. Mater. 11 (2009), p. 350.
    [90] T.S. Shih and S.H. Tu, Mater. Sci. Eng. A454-455 (2007), p. 349.
    [91] M. Sundqvist and S. Hogmark, Tribol. Int. 26 (1993), p. 129.
    [92] H.J. Lamb and M.J. Wheeler, J. Inst. Met. 92 (1963), p. 150.
    [93] S. Shankar and D. Apelian, Metall. Trans., B, Process Metall. 33 (2002), p. 465.
    [94] W.J. Cheng and C.J. Wang, Mater. Charact. 61 (2010), p. 467.
    [95] S.R.J. Saunders, M. Monteiro and F. Rizzo, Progr. Mater. Sci.
    53 (2008), p. 775.
    [96] S. Mrowec, Corros. Sci. 7 (1967), p. 563.
    [97] P. Kofstad, High-temperature corrosion, Elsevier Applied Science, London (1988).
    [98] M. Fukumoto, S. Maeda, S, Hayashi and T. Narita, Oxid. Met. 55 (2001), p. 401.
    [99] S. Hayashi and T. Narita, Oxid Met. 56 (2001), p. 251.
    [100] S. Hayashi and T. Narita, Oxid Met. 58 (3/4) (2002), p. 319.
    [101] N. Bertrand, C. Desgranges, D. Poquillon , M. C. Lafont, and D. Monceau, Oxid. Met. 73 (2010), p. 139.
    [102] R. Y. Chen and W.Y.D. Yuen, Metallur. Mater. Trans. A 40A (2009), p. 3091.
    [103] D.L. Douglass, P. Kofstad, A. Rahmel and G.C. Wood, Oxid Met. 45 (1996), p. 529.
    [104] H. Buscail, S. Heinze, Ph. Dufour and J.P. Larpin, Oxid. Met. 47 (1997), p. 445.
    [105] H. Al-Badairy and G. Tatlock, Mater. High. Temp. 17 (2000), p. 133.
    [106] W.E. Boggs, J. Electrochem. Soc. 118 (1977), p. 906.
    [107] K. Onal, M.C. Maris-Sida, G.H. Meier and F.S. Pettit, Mater. High. Temp. 20 (2003), p. 81.
    [108] R. Janakiraman, G.H. Meier and F.S. Pettit, Metall. Mater. Trans. A. 30A (1999), p. 2905.
    [109] James L. Smialek and Gregory N. Morscher, Mater. Sci. Eng. A332 (2002), p. 11.
    [110] A. Agüero, R. Muelas, A. Pastor, and S. Osgerby, Surf. Coat. Technol. 200 (2005), p. 1219.
    [111] F.J. Pérez and S.I. Castañeda, Surf. Coat. Technol. 201 (2007), p. 6239.
    [112] I. Kvernes, M. Oliveira and P. Kofstad, Corros. Sci. 17 (1977), p. 237.
    [113] J.R. Regina, J.N. DuPont and A.R. Marder, Oxid. Met. 61 (2004), p. 69.
    [114] J.R. Regina, J.N. DuPont and A.R. Marder, Mater. Sci. Eng. A405 (2005), pp. 102.
    [115] Y. Zhang, B.A. Pint, J.A. Haynes and P.F. Tortorelli, Oxid. Met. 62 (2004), p. 103.
    [116] C. Zhou, J. Yu, S. Gong and H. Xu, Surf. Coat. Technol. 161 (2002), p. 86.
    [117] C. Leyens, K. Fritscher, R. Gehrling, M. Peters and W.A. Surf. Coat. Technol. 82 (1996), p. 133.
    [118] Z. Liu and T. Narita, Intermetallics 12 (2004), p. 459.
    [119] T. Å Kermark and G. Hultquist, Oxid. Met. 47 (1997), p. 117.
    [120] Z.J. Lin, M.S. Li, J.Y. Wang and Y.C. Zhou, Scrip. Materia.
    58 (12008), p. 29.
    [121] J. Metsäjoki, E. H. Saarivirta and T. Lepistö, J. Mater. Eng. Perfor, DOI: 10.1007/s11665-010-9675-4, (2010), p. 1.
    [122] http://www.efunda.com/materials/alloys/carbon_steels/
    [123] R.I.L. Guthrie: Iron Steel Technol. 3 (2006), p. 104.
    [124] P.R. Wilson, Z. Chen, C.R. Killmore, S.J. Laird, and J.G. Williams, ISIJ International, 47 (2007), p. 114.
    [125] S. Zalkind, M. Polak and N. Shamir, Surf. Sci. 601 (2007), p.1326.
    [126] R.Y. Chen and W.Y. D Yuen, ISIJ International 45 (2005), p. 52.
    [127] M. Yoshihara, S. Taniguchi, S and T. Kubota, J. Japan Inst. Metal. 71 (2007), p. 16.
    [128] S. Taniguchi, N. Hongawara and T. Shibata, J. Japan Inst. Metal. 62 (1998), p. 542.
    [129] X.Y. Li and S. Taniguchi, Intermetallics 12 (2004), p. 11.
    [130] T. Anjali, C. Dhanesh, C. Raja, D, Jaak, T. Nobumichi and K. Martin, Corros. Sci. 50 (2008), p. 2804.
    [131] H.T. Abuluwefa, R.I.L. Guthrie and F. Ajersch, Oxid. Met. 46 (1996), p. 423.
    [132] R.Y. Chen and W.Y.D. Yuen, Oxid.Met. 70 (2008), p. 39.
    [133] R.Y. Chen and W.Y.D. Yuen, Oxid.Met. 59 (2003), p. 433.
    [134] R.Y. Chen and W.Y.D. Yuen: Mater. Sci. Forum, 522–523 (2006), p. 77.
    [135] R.B. Runk and H.J. Kim, Oxid. Met. 2 (1970), p. 285.
    [136] A.P. Grosvenor, B.A. Kobe, and N.S. McIntyre, Surf. Sci. 574 (2005), p. 317.
    [137] V.H.J Lee, B Gleeson, D.J Young, Oxid. Metals, 63 (2005), p. 15.
    [138] V.K. Tolpygo, and D.R. Clarke, Acta Materialia, 46 (1998), p. 5167.
    [139] F. H. Stott, G. C. Wood and J. Stringer. Oxid. Metals 44 (1995), p. 113.
    [140] N. Bertrand, C. Desgranges, D. Gauvain, D. Monceau, and D. Poquillon, Mater. Sci. Forum 591 (2004), p.461.
    [141] D. A. Voss, E. P. Butler, and T. E. Mitchell, Metallur.Mater. Trans. A: Phys. Metallur. Mater. Sci. 13 (1982), p. 929.
    [142] N. Bertrand, C. Desgranges, D. Poquillon, M.C. Lafont and D. Monceau, Oxid. Metals 73 (2010), p. 139.
    [143] G. M. Raynaud and R. A. Rapp, Oxid. Metals 21 (1984), p. 89.
    [144] R.L. Tallman and E.A. Gulbransen, J. Electrochem. Soc. 114 (1967), p. 1228.
    [145] M. Hänsel, W. J. Quadakkers, and D. J. Young, Oxid. Met. 59 (2003), p. 285.
    [146] A. G. Goursat and W. W. Smeltzer, Oxid. Met. 6 (1973), p. 101.
    [147] T. Maruyama, N. Fukagai, M. Ueda, and K. Kawamura, Mater. Sci. Forum 807 (2004), p. 461.
    [148] Rüdiger Dieckmann, Mater. High. Temp. 22 (2005), p. 93.
    [149] R. Peraldi, D. Monceau, and B. Pieraggi, Oxid. Met. 58 (2002), p. 249.
    [150] Gesmundo, F. and P.Y. Hou, Oxid. Met. 59 (2003), p. 63.
    [151] J.E. Antill, K.A. Peakall and J.B. Warbuton, Corros. Sci. 8 (1968), p. 689.
    [152] S. Valette, A. Denoirjean, D. Tétard and P. Lefort, J. Alloys. Comps. 413 (2006), p. 222.
    [153] J. Shi, D.R. Wang , Y.D. He, H.B. Qi and G. Wei, Materials Letters
    62 (2008), p. 3500.
    [154] F.S. Pettit and J.B. Wagner, Acta Met. 12(1964), p. 35.
    [155] A.M. Pritchard, J.E. Antill, K.R.J. Coteel, K.A. Peakal and A.E. Truswell, Oxid. Met. 9 (1975), p. 181.
    [156] G.B. Gibss, Oxid. Met. 7 (1973), p.173.
    [157] G. Vagnard et J. Manenc, Circulaire d’Information Technique-Centre de Documentation Sidérurgique 26 (1969), p. 1073.
    [158] B. Schmid, N. Aas, O. Grong, and R. Odegård, Oxid. Met. 57 (2002), p. 115.
    [159] J. Baud, A. Ferrier, J. Manenc and J. Bénard. Oxid. Met. 9 (1975), p. 69.
    [160] C.Y. Lin and J.Y. Pan. Corr. Prev. Control 47 (2000), p. 83.
    [161] C.J. Wang and J.Y. Pan, Mater. Chems. Phys. 82 (2003), p. 965.
    [162] Y.N. Chang and F.I. Wei. J. Mater. Sci. 24 (1989), p. 14.
    [163] G. Zhou and J.C. Yang, Appl. Surf. Sci. 210 (2003), p. 165.
    [164] C.V. Thompson, Annu. Rev. Mater. Sci. 20 (1990), p. 245.
    [165] D.J. Young, High-temperature and Corrosion of Metals 1st ed., Elsevier Corrosion Series, (2008), p. 455.
    [166] Z. Sahin and O. Durgun, J. Energy & Fuel 23 (2009), p. 1707.
    [167] C. J. Wang and J. Y. Pan: Mater. Chem. Phys. 82 (2003), p. 965
    [168] Z. Sahin, J. Energy & Fuels 22 (2008), p. 3201
    [169] B. A. Pint and I. G. Wright, J. Nucl. Mater. 307-311 (2002), p. 763.
    [170] Y.Y. Chang, C.C. Tsaur and J.C. Rock, Surf. Coat. Technol. 200 (2006), p. 6588.
    [171] P. Dillmann, B. Regad, and G. Moulin, J. Mater. Sci. Lett. Vol. 19 (2000), p. 907.
    [172] H. Götlind H, F. Liu, J.E. Svensson, M. Halvarsson and L.G. Johansson, Oxid. Met. 67 (2007), p. 251.
    [173] S. Chevalier, P. Juzon, K. Rzybylski and J. P. Larpin, Sci. Technol. Adv. Mater. 10 (2009), p.1.
    [174] A. Agüero, Energy Maters. 3 (2008), p. 35.
    [175] Y. Wouters, A. Galerie and J. P. Petit, Solid State Ionics, 104 (1997), p.89.
    [176] M.T. Tran, M. Boinet , A. Galerie and Y. Wouters, Corr. Sci. 52 (2010), p. 2365.
    [177] R. Kremer and W. Auer, Mater. Corros. 48 (1997), p. 35.
    [178] Y.N. Chang, Corrosion 50 (1994), p. 3.
    [179] A.S. Khanna, P. Rodriguez and J.B. Gnanamoorthy, Oxid. Met. 26 (1986), p. 171.
    [180] R. Jha, C.W. Haworth and B.B. Argent, Calphad 25 (2001), p. 667.
    [181] S. Paldey and S.C. Deevi, Mater. Sci. Eng. A355 (2003), p. 208.
    [182] B.A. Pint, Y. Zhang, L. R. Walker, and I. G. Wright, Surf. Coat. Technol. 202 (2007), p. 637.
    [183] P.R. Jackson and G.R. Wallwork, Oxid. Met. 20 (1983), p. 1.a
    [184] J.H. Devan and P.F. Tortorelli, Corros. Sci. 35 (1993), p. 1065.
    [185] R.M. Roberts, T.S. Elleman and K. Verghese, J. Am. Ceram. Soc. 62 (1979), p. 495.
    [186] O. Johannesen and A.G. Andersen, Selected Topics in High-temperature Chemistry: Defect Chemistry of solid. Studies in Inorganic 9, Elsevier, (1989), p.101.
    [187] W.J. Quadakkers, J. Zurek, M. Hänsel, JOM, 61 (2009), p. 44.

    QR CODE