簡易檢索 / 詳目顯示

研究生: 張晉睿
Chin-Jui Chang
論文名稱: 以雷射掃描自動化鋼結構虛擬組立之初探
A preliminary study on using laser scanning for automated virtual assembly of steel structures
指導教授: 謝佑明
Yo-Ming Hsieh
莊子毅
Tzu-Yi Chuang
口試委員: 陳鴻銘
Hung-Ming Chen
陳正誠
Cheng-Cheng Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 光達螺栓孔辨識虛擬組裝
外文關鍵詞: LiDAR simulator, bolt hole recognition, virtual assembly
相關次數: 點閱:148下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 預裝在鋼結構中扮演著重要角色,它指的是在現場施工之前,將結構元件預先在製造廠或預裝場進行組裝。然而,當前預裝過程需要耗費大量人力和時間,以確保元件在合理誤差範圍內成功組裝。本研究開發了光達模擬器作為研究工具,以此模擬實務上以光達(LiDAR,Light Detection and Ranging) 取得構件的掃描資料。

    藉由掃描鋼構件所獲得的點雲資料,本研究提出了基於點雲資料的自動化螺栓孔辨識演算法,該演算法能夠高度自動化地處理螺栓孔辨識問題。透過這項自動化辨識方法,本研究在多個案例中成功辨識螺栓孔平均比例高達99.8%,顯示了演算法的有效性與準確性。

    最後,本研究提出利用構件的特徵點與幾何條件搭配窮舉法尋找兩構件匹配的轉換矩陣,透過計算成功得到兩個構件的接合姿態。此方法使得在電腦中進行虛擬組裝成為可能,並可省略實務上對構件進行預裝的流程。這項虛擬組裝技術在此階段帶來更高的安全性與效率,並有望在鋼結構領域中發揮重要的應用價值。


    Pre-assembly plays a significant role in steel structures, referring to the process of preassembling structural components in manufacturing plants or pre-assembly sites before on-site construction. However, pre-assembly may lead to work safety accidents due to various reasons. To address this issue, this study developed a LiDAR simulator as a research tool with highly flexible and versatile parameter settings, capable of generating highly realistic scan data according to user requirements.
    Upon obtaining scan data of steel components through the LiDAR simulator, this study proposed an automated bolt hole recognition algorithm based on point cloud data. The algorithm efficiently handles complex bolt hole recognition problems and successfully restores unidentified bolt holes in the components. Through this automated recognition method, the study achieved an average success rate of 99.8% in recognizing and repairing bolt holes in multiple cases, demonstrating the effectiveness and accuracy of the algorithm.
    Finally, the study presented a method using an exhaustive search to find the transformation matrix for matching two components, enabling successful calculation of their joint configuration. This method allows virtual assembly in a computer environment, eliminating the need for practical pre-assembly procedures. The virtual assembly technique contributes to higher safety and efficiency at this stage, showing promising potential for significant application in the field of steel structures.

    論文摘要 I ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究流程 2 1.2.1 論文架構 3 第二章 文獻回顧 5 2.1 虛擬組裝 5 2.2 影響光達資料的強度因素 6 2.3 點雲資料中辨識邊界點 7 第三章 研究工具與演算法 8 3.1 研究工具 8 3.1.1 AutoCAD 8 3.1.2 Revit & Revit API 9 3.1.3 Visual Studio 2019 9 3.1.4 VTK 9 3.1.5 OpenMP 10 3.1.6 PCL 10 3.1.7 Eigen 10 3.1.8 CloudCompare 11 3.2 研究用演算法 11 3.2.1 主成分分析 11 3.2.2 聚類分析 12 3.2.3 RANSAC 12 3.2.4 Octree 13 3.2.5 奇異值分解與旋轉矩陣 13 第四章 光達模擬器 15 4.1 光達模擬器運作流程 15 4.2 光達模擬器設定與輸入 16 4.3 光達模擬器雷射掃描 21 4.3.1 光達模擬器掃描流程 21 4.3.2 光達模擬器掃描範圍 24 4.3.3 利用平行計算提升掃描效率 28 4.4 雷射距離與入射角對掃描強度值探討 30 4.5 光達模擬器其他功能 34 4.5.1 掃描完整度之評估方式 35 4.5.2 不同掃描之重疊率 37 4.6 成果展示 37 4.7 小結 39 第五章 自動化螺栓孔辨識 40 5.1 自動化螺栓孔辨識處理流程 40 5.2 點雲降採樣 42 5.3 第一階段螺栓孔擬合 44 5.4 第二階段螺栓孔擬合 48 5.5 螺栓孔數量檢查與修復 53 5.6 無法修復的案例 57 5.7 螺栓孔辨識之成果展示 61 5.8 小結 64 第六章 自動化虛擬組裝 65 6.1 自動化虛擬組裝流程 65 6.2 特徵點找尋 66 6.3 特徵點匹配 69 6.4 成果展示 73 6.5 小結 80 第七章 結論與建議 81 7.1 結論 81 7.2 建議與未來展望 82 第8章 參考文獻 84

    [1] 李家順, "鋼橋預裝缺失案例及臨時螺栓使用規定探討", 臺灣公路工程月刊, vol. 42, no. 6, pp. 2-49, 2016.
    [2] D. F. Laefer, "Harnessing remote sensing for civil engineering: then, now, and tomorrow," in Applications of Geomatics in Civil Engineering: Select Proceedings of ICGCE 2018, 2020: Springer, pp. 3-30.
    [3] G. Cha, S.-H. Sim, S. Park, and T. Oh, "LiDAR-based bridge displacement estimation using 3D spatial optimization," Sensors, vol. 20, no. 24, p. 7117, 2020.
    [4] G. Cha, S. Park, and T. Oh, "A terrestrial LiDAR-based detection of shape deformation for maintenance of bridge structures," Journal of construction Engineering and Management, vol. 145, no. 12, p. 04019075, 2019.
    [5] L. Truong‐Hong, D. F. Laefer, T. Hinks, and H. Carr, "Combining an angle criterion with voxelization and the flying voxel method in reconstructing building models from LiDAR data," Computer‐Aided Civil and Infrastructure Engineering, vol. 28, no. 2, pp. 112-129, 2013.
    [6] C. Yi et al., "Urban building reconstruction from raw LiDAR point data," Computer-Aided Design, vol. 93, pp. 1-14, 2017.
    [7] F. Case, A. Beinat, F. Crosilla, and I. Alba, "Virtual trial assembly of a complex steel structure by Generalized Procrustes Analysis techniques," Automation in construction, vol. 37, pp. 155-165, 2014.
    [8] Y. Zhou et al., "Accurate virtual trial assembly method of prefabricated steel components using terrestrial laser scanning," Advances in Civil Engineering, vol. 2021, pp. 1-15, 2021.
    [9] Y.-G. Wang, X.-J. He, J. He, and C. Fan, "Virtual trial assembly of steel structure based on BIM platform," Automation in Construction, vol. 141, p. 104395, 2022.
    [10] D. Li, J. Liu, L. Feng, Y. Zhou, H. Qi, and Y. F. Chen, "Automatic modeling of prefabricated components with laser‐scanned data for virtual trial assembly," Computer‐Aided Civil and Infrastructure Engineering, vol. 36, no. 4, pp. 453-471, 2021.
    [11] R. S. Opitz, "An overview of airborne and terrestrial laser scanning in archaeology," Interpreting archaeological topography: Airborne laser scanning, 3D data and ground observation, pp. 13-31, 2013.
    [12] W. Fang, X. Huang, F. Zhang, and D. Li, "Intensity correction of terrestrial laser scanning data by estimating laser transmission function," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 2, pp. 942-951, 2014.
    [13] S. Kaasalainen, A. Jaakkola, M. Kaasalainen, A. Krooks, and A. Kukko, "Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods," Remote Sensing, vol. 3, no. 10, pp. 2207-2221, 2011.
    [14] S. Soudarissanane, R. Lindenbergh, M. Menenti, and P. Teunissen, "Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points," ISPRS journal of photogrammetry and remote sensing, vol. 66, no. 4, pp. 389-399, 2011.
    [15] S. Kaasalainen et al., "Brightness measurements and calibration with airborne and terrestrial laser scanners," IEEE transactions on geoscience and remote sensing, vol. 46, no. 2, pp. 528-534, 2008.
    [16] A. Pesci and G. Teza, "Effects of surface irregularities on intensity data from laser scanning: an experimental approach," Annals of Geophysics, vol.51, pp. 839-848, 2008.
    [17] T. H. Trinh and M. H. Tran, "Hole boundary detection of a surface of 3D point clouds," in 2015 International Conference on Advanced Computing and Applications (ACOMP), 2015: IEEE, pp. 124-129.
    [18] S. Suer, S. Kockara, and M. Mete, "An improved border detection in dermoscopy images for density based clustering," in BMC bioinformatics, 2011, vol. 12, no. 10: BioMed Central, pp. 1-10.
    [19] X. Huang, X. Cheng, F. Zhang, and J. Gong, "Side ratio constrain based precise boundary tracing algorithm for discrete point clouds," International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 37, pp. 349-354, 2008.
    [20] A. Sampath and J. Shan, "Building boundary tracing and regularization from airborne LiDAR point clouds," Photogrammetric Engineering & Remote Sensing, vol. 73, no. 7, pp. 805-812, 2007.
    [21] S. Wei, "Building boundary extraction based on lidar point clouds data," Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 37, pp. 157-161, 2008.
    [22] E. Kalogerakis, D. Nowrouzezahrai, P. Simari, and K. Singh, "Extracting lines of curvature from noisy point clouds," Computer-Aided Design, vol. 41, no. 4, pp. 282-292, 2009.
    [23] G. H. Bendels, R. Schnabel, and R. Klein, "Detecting holes in point set surfaces," Journal of International Conference in Central Europe on Computer Graphics and Visualization (WSCG), vol. 14, no. 1-3, pp. 89-96, 2006.
    [24] Autodesk Inc., "Autodesk AutoCAD: Trusted by millions, built to accelerate your creativity." https://www.autodesk.com.cn/products/autocad/overview?term=1-YEAR&tab=subscription (accessed Jul, 2023).
    [25] Autodesk Inc., "Autodesk Revit: BIM software to design and make anything." https://www.autodesk.com/products/revit/overview?term=1-YEAR&tab=subscription (accessed Jul, 2023).
    [26] Gui Talarico, "Revit API Docs." https://www.revitapidocs.com/ (accessed Jul, 2023).
    [27] "GitHub Copilot and Visual Studio 2022." https://visualstudio.microsoft.com/ (accessed Jul, 2023).
    [28] "What is Visual Studio?" https://learn.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide?view=vs-2019 (accessed Jul, 2023).
    [29] W. S. a. K. M. a. B. Lorensen, The Visualization Toolkit (4th ed.). Kitware, 2006.
    [30] "OpenMP." https://www.openmp.org/ (accessed Jul, 2023).
    [31] R. B. Rusu and S. Cousins, "3d is here: Point cloud library (pcl)," in 2011 IEEE international conference on robotics and automation, 2011: IEEE, pp. 1-4.
    [32] "Eigen." https://eigen.tuxfamily.org/index.php?title=Main_Page (accessed Jul, 2023).
    [33] "CloudCompare." https://www.cloudcompare.org/main.html (accessed Jul, 2023).
    [34] "PCA." https://en.wikipedia.org/wiki/Principal_component_analysis (accessed Jul, 2023).
    [35] "Cluster analysis." https://en.wikipedia.org/wiki/Cluster_analysis (accessed Jul, 2023).
    [36] V. Estivill-Castro, "Why so many clustering algorithms: a position paper," ACM SIGKDD explorations newsletter, vol. 4, no. 1, pp. 65-75, 2002.
    [37] "Euclidean Cluster Extraction." https://pcl.readthedocs.io/en/latest/cluster_extraction.html (accessed Jul, 2023).
    [38] "Random sample consensus." https://en.wikipedia.org/wiki/Random_sample_consensus (accessed Jul, 2023).
    [39] "Octree." https://en.wikipedia.org/wiki/Octree (accessed Jul, 2023).
    [40] T. Fujiwara, M. Iwamaru, M. Tange, S. Someya, and K. Okamoto, "A fractal-based 2D expansion method for multi-scale volume data visualization," Journal of visualization, vol. 14, pp. 171-190, 2011.
    [41] "Singular value decomposition." https://en.wikipedia.org/wiki/Singular_value_decomposition (accessed Jul, 2023).
    [42] K. S. Arun, T. S. Huang, and S. D. Blostein, "Least-squares fitting of two 3-D point sets," IEEE Transactions on pattern analysis and machine intelligence, no. 5, pp. 698-700, 1987.
    [43] "Leica RTC360 3D Laser Scanner." https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360 (accessed Jul, 2023).
    [44] "Speedup." https://en.wikipedia.org/wiki/Speedup (accessed Jul, 2023).
    [45] Y. He and S. Chen, "Recent advances in 3D data acquisition and processing by time-of-flight camera," IEEE Access, vol. 7, pp. 12495-12510, 2019.
    [46] Y. He, B. Liang, Y. Zou, J. He, and J. Yang, "Depth errors analysis and correction for time-of-flight (ToF) cameras," Sensors, vol. 17, no. 1, p. 92, 2017.
    [47] F. Pomerleau, A. Breitenmoser, M. Liu, F. Colas, and R. Siegwart, "Noise characterization of depth sensors for surface inspections," in 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI), 2012: IEEE, pp. 16-21.
    [48] P. Li, R. Wang, Y. Wang, and W. Tao, "Evaluation of the ICP algorithm in 3D point cloud registration," IEEE Access, vol. 8, pp. 68030-68048, 2020.
    [49] J. Lu, W. Wang, H. Shao, and L. Su, "Point cloud registration algorithm fusing of super 4PCS and ICP based on the key points," in 2019 Chinese Control Conference (CCC), 2019: IEEE, pp. 4439-4444.
    [50] C. Mineo, S. G. Pierce, and R. Summan, "Novel algorithms for 3D surface point cloud boundary detection and edge reconstruction," Journal of Computational Design and Engineering, vol. 6, no. 1, pp. 81-91, 2019.
    [51] "鋼結構極限設計法規範及解說." https://www.cpami.gov.tw/component/content/article/10491-%E9%8B%BC%E6%A7%8B%E9%80%A0%E5%BB%BA%E7%AF%89%E7%89%A9%E9%8B%BC%E7%B5%90%E6%A7%8B%E8%A8%AD%E8%A8%88%E6%8A%80%E8%A1%93%E8%A6%8F%E7%AF%84.html (accessed Jul, 2023).

    QR CODE