簡易檢索 / 詳目顯示

研究生: 張合
He Jhang
論文名稱: 運用基因演算法優化光學相位控制陣列
Optical Phased Array Optimization through Genetic Algorithm
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 莊敏宏
Miin-Horng Juang
何文章
Wen-Jeng Ho
王煥宗
Huan-Chun Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 108
中文關鍵詞: 光達光學相控陣列相位陣列理論基因演算法
外文關鍵詞: LiDAR, Optical Phased Array, Phased Array, Genetic Algorithm
相關次數: 點閱:281下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光達(LiDAR)在現今已是非常融入生活的一項技術,因光達能夠快速且簡單的量測出發射端與反射物間的距離,可以降大幅降低程式運算成本,非常符合無人化機械在定義周圍物體距離或空間概念的需求。光達的種類大略能分成三種:機械式、固態式、混合式,三種狀況各有優劣,可以針對不同狀況使用不同的光達,此篇論文討論的為固態式光達的其中一種分支:晶片光達,此種光達結合了兩種非常成熟的技術,分別為以雷達相控陣列為基礎的光學相控陣列(OPA)以及能夠將光達系統的發射與接收整合在CMOS製程之矽光子積體化晶片上。
    依照相位陣列可以實現LiDAR的光束的偏轉,此理論可以推出每根天線所需要的相位差,但在實際的晶片上,會有很多因素影響天線相位差,使光束成像不佳。因此使用基因演算法能夠將多個數值產生的結果,逐步往理論成像角度做收斂,以達到優化光學相控陣列的效果。我們先利用相位陣列理論,將遠場電場的公式分為element factor以及array factor,利用商用模擬軟體RSoft 模擬單根天線的遠場繞射圖作為element factor,再利用天線間距等參數完成array factor的出光角度計算,最後將element factor與array factor合併為理想遠場干涉電場,並用此電場作為基因演算法的適應函數,最後讓基因演算法在實驗晶片上,藉由繁殖,剔除較差適應度的電壓群,以進行電壓群之選擇,使實驗上的遠場干涉成像最接近理想值。
    此篇論文主要會討論到關於在晶片LiDAR光束轉向的實驗上,如何利用基因演算法法迴圈考慮實驗迴圈,而基因演算法最重要的適應函數是如何用相位陣列理論計算出遠場電場干涉圖,且如何使用此遠場電場干涉圖與實驗掃描光強度對角度圖得到的值做比較並且化為同樣的論值做適應度分析。實驗上我們先使用基因演算法搜尋晶片LiDAR的0°光束,並且定義光強度最大值在此角發生,接著再用基因演算法搜尋其他角度的光束偏轉,例如30°、50°,達到優化相控陣列的效果,此間距1 μm之一維天線,可視場角約為100°,最後由基因演算法求出光束FWHM約為1.60,且SMSR約為5 dB。


    LiDAR is already a technology that is closely integrated into life today. Because LiDAR can quickly and easily measure the distance between the transmitter and the reflector, it can significantly reduce the cost of programming and computing, which agrees with the needs of unmanned machinery in defining the distance or space concept of surrounding objects. LiDAR can be divided into three types: mechanical, solid-state, and hybrid. Each of these three conditions has its advantages and disadvantages. Different LiDAR can be used for different situations. The chip-based solid-state LiDAR, including two very mature technologies - optical phased array (OPA)-based radar phased array and silicon photonics-based integrated chip for the transmission and reception of LiDAR system through CMOS process, will be further discussed in this thesis.
    According to the phased array, the deflection of LiDAR's beam can be achieved. This theory can introduce the phase difference required for each antenna. Still, many factors will affect the antenna phase difference in the actual wafer, making the poor beam imaging. Therefore, a genetic algorithm can gradually converge the results generated by multiple values to the theoretical imaging angle by optimizing the phased optical array. We first use the phased array theory to divide the formula of the far-field electric field into element factor and array factor. We use the commercial simulation software RSoft to simulate the far-field diffraction pattern of a single antenna as an element factor and then use the antenna spacing and other parameters to complete the calculation of the light exit angle of the array factor. Finally, the element and array factors are combined into an ideal far-field interference electric field, which is used as a fitness function of the genetic algorithm. Eventually, the genetic algorithm is adopted on the experimental chip to demonstrate the practical far-field interference imaging, closest to the ideal value, by breeding to remove the voltage group with poor fitness for the voltage group selection.
    This thesis will mainly discuss using the genetic algorithm to consider the experimental loop in the chip-based LiDAR beam steering experiment. The most crucial fitness function of the genetic algorithm is how to use the phase array theory to calculate the far-field electric field interferogram, which will be compared with the values obtained by the angle diagram with the experimental scanning light intensity for fitness analysis. Experimentally, we first use a genetic algorithm to search for the 0° beam of the chip-based LiDAR and define the maximum light intensity at this angle. Then we use a genetic algorithm to search for beam deflection at other angles, such as 30°, 50°, to achieve the effect of optimizing the phased array. With this spacing of 1 µm in a one-dimensional antenna, the visual field of view is about 100°. Finally, the genetic algorithm finds that the beam FWHM is about 1.60, and the SMSR is about 5 dB.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XIII 第一章 導論 1 1.1簡介 1 1.2研究背景 2 1.3研究動機 3 1.4論文架構 4 第二章 矽光子積體電路元件 5 2.1波導結構 5 2.2單、多模條件 6 2.3雙折射效應 7 2.4波導傳輸損耗 8 2.4.1材料吸收損耗(Absorption Loss) 8 2.4.2洩漏損耗(Leakage Loss) 9 2.4.3彎曲損耗(Bending Loss) 9 2.4.4散射損耗(Scattering Loss) 11 2.5 光柵耦合器 11 2.6分光器 12 2.7相移器 13 .8 MACH-ZEHNDER 干涉器 17 2.9可調式光衰減器 19 2.10光檢測器 20 2.10.1光檢測器工作原理[35] 20 2.10.2光檢測器重要參數[35] 21 2.10.3 光檢測器種類 23 2.10.4 InP/InGaAs異質接面 p-i-n晶片製程 23 2.10.5 p-i-n晶片空乏區與響應速度關係[36] 30 第三章 LIDAR結構及相控陣列 31 3.1 晶片LIDAR結構 31 3.2光學相位陣列理論 32 3.2.1相位陣列理論 32 3.2.2自由空間中的成像繞射理論 36 3.3 相控陣列 37 3.3.1獨立控制熱相移器陣列 37 3.3.2聯級(Cascaded)控制熱相移器陣列 37 3.3.3熱相移器控制線性相位差 38 3.4一維低耦合天線陣列 40 3.4.1 波導線寬天線對光遠場影響 42 3.4.2 相位補償 42 第四章 基因法演算法補償光學相控陣列 46 4.1基因演算法(GENETIC ALGORITHM) 46 4.1.1基因演算法概述 46 4.1.2基因演算法優點 47 4.1.3基因演算法缺點 48 4.2光學相控陣列產生的非理論相位差 49 4.3基因演算法與光學相控陣列結合 50 4.3.1為何使用基因演算法來補償相位 50 4.3.2定義理論光束角度 50 4.3.3隨機生成電壓 52 4.3.4個體群選擇、繁殖 53 4.3.5 達到指定適應度 55 4.3.6 程式結構迴圈 56 第五章 實驗結果與討論 58 5.1波導耦合平台 58 5.1邊緣耦合 58 5.1.2光柵耦合 58 5.1.3 兩種耦合器比較 59 5.1.3 實驗室量測架構 60 5.2 波導耦合量測分析 63 5.3 LIDAR量測系統 65 5.2.1 LiDAR光束遠場量測步驟 66 5.2.2 LiDAR量測平台 67 5.3量測結果與分析 67 5.3.1分光器量測 67 5.3.2 VOA量測 70 5.3.3一維低耦合波導陣列量測 72 5.3.4 MZI結構不同長度熱相移器Vπ量測 74 5.3.5 聯級熱相移器LiDAR每級應給予電壓範圍推導 76 5.3.6 晶片LiDAR波束成形與相位調控 83 第六章 結論與未來展望 88 6.1結論 88 6.2未來展望 88 參考文獻 90

    [1] R. L. J. A. C. E. S. J. Haupt, “Genetic algorithm applications for phased arrays,” vol. 21, no. 3, pp. 325, 2006.
    [2] C. Liu, W. Xu, L. Zhou, L. Lu, and J. Chen, "Multi-agent genetic algorithm for sparse optical phased array optimization." p. M4A. 286.
    [3] K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. J. O. l. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” vol. 34, no. 9, pp. 1477-1479, 2009.
    [4] Y. Guo, Y. Guo, C. Li, H. Zhang, X. Zhou, and L. J. A. S. Zhang, “Integrated Optical Phased Arrays for Beam Forming and Steering,” vol. 11, no. 9, pp. 4017, 2021.
    [5] D. Wight, J. Heaton, B. Hughes, J. Birbeck, K. Hilton, and D. J. A. P. L. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” vol. 59, no. 8, pp. 899-901, 1991.
    [6] G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, "Optically controlled millimeter wave antenna." pp. 275-278.
    [7] G. W. Webb, S. Angello, W. Vernon, M. Sanchez, and S. Rose, "Novel photonically controlled antenna for MMW communications." pp. 97-100.
    [8] I. V. Minin, and O. V. Minin, "The brief elementary basics of antenna arrays," Basic Principles of Fresnel Antenna Arrays, pp. 1-70: Springer, 2008.
    [9] F. Xiao, W. Hu, and A. J. A. o. Xu, “Optical phased-array beam steering controlled by wavelength,” vol. 44, no. 26, pp. 5429-5433, 2005.
    [10] K. Van Acoleyen, “Nanophotonic beamsteering elements using silicon technology for wireless optical applications,” Ghent University, 2012.
    [11] T. Kim, P. Bhargava, C. V. Poulton, J. Notaros, A. Yaacobi, E. Timurdogan, C. Baiocco, N. Fahrenkopf, S. Kruger, and T. J. I. J. o. S.-S. C. Ngai, “A single-chip optical phased array in a wafer-scale silicon photonics/CMOS 3D-integration platform,” vol. 54, no. 11, pp. 3061-3074, 2019.
    [12] Y.-C. Chang, S. A. Miller, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, and O. A. J. Gordillo, "Scalable low-power silicon photonic platform for all-solid-state beam steering." p. 109821A.
    [13] R. A. J. A. o. Meyer, “Optical beam steering using a multichannel lithium tantalate crystal,” vol. 11, no. 3, pp. 613-616, 1972.
    [14] X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, and M. J. I. P. J. Vervaeke, “Electrically controllable liquid crystal component for efficient light steering,” vol. 7, no. 2, pp. 1-13, 2015.
    [15] F. Gou, F. Peng, Q. Ru, Y.-H. Lee, H. Chen, Z. He, T. Zhan, K. L. Vodopyanov, and S.-T. J. O. e. Wu, “Mid-wave infrared beam steering based on high-efficiency liquid crystal diffractive waveplates,” vol. 25, no. 19, pp. 22404-22410, 2017.
    [16] X. Zhang, S. J. Koppal, R. Zhang, L. Zhou, E. Butler, and H. J. O. e. Xie, “Wide-angle structured light with a scanning MEMS mirror in liquid,” vol. 24, no. 4, pp. 3479-3487, 2016.
    [17] Y. Wang, G. Zhou, X. Zhang, K. Kwon, P.-A. Blanche, N. Triesault, K.-s. Yu, and M. C. J. O. Wu, “2D broadband beamsteering with large-scale MEMS optical phased array,” vol. 6, no. 5, pp. 557-562, 2019.
    [18] W. R. Huang, J. Montoya, J. E. Kansky, S. M. Redmond, G. W. Turner, and A. J. O. e. Sanchez-Rubio, “High speed, high power one-dimensional beam steering from a 6-element optical phased array,” vol. 20, no. 16, pp. 17311-17318, 2012.
    [19] N. Carlson, G. Evans, R. Amantea, S. Palfrey, J. Hammer, M. Lurie, L. Carr, F. Hawrylo, E. James, and C. J. A. p. l. Kaiser, “Electronic beam steering in monolithic grating‐surface‐emitting diode laser arrays,” vol. 53, no. 23, pp. 2275-2277, 1988.
    [20] G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. J. O. e. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” vol. 26, no. 9, pp. 11529-11537, 2018.
    [21] H. Morino, T. Maruyama, and K. J. J. o. l. t. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” vol. 32, no. 12, pp. 2188-2192, 2014.
    [22] S. Chen, Y. Shi, S. He, and D. J. O. l. Dai, “Low-loss and broadband 2× 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers,” vol. 41, no. 4, pp. 836-839, 2016.
    [23] Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. Jaeger, and L. J. I. P. J. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” vol. 8, no. 3, pp. 1-8, 2016.
    [24] R. A. Soref, J. Schmidtchen, and K. J. I. J. o. Q. E. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2,” vol. 27, no. 8, pp. 1971-1974, 1991.
    [25] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. J. J. o. l. t. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” vol. 23, no. 6, pp. 2103, 2005.
    [26] T. Aalto, Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
    [27] Y. J. I. J. o. s. t. i. q. e. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” vol. 8, no. 6, pp. 1090-1101, 2002.
    [28] E. J. B. S. T. J. Marcatili, “Bends in optical dielectric guides,” vol. 48, no. 7, pp. 2103-2132, 1969.
    [29] M. Heiblum, and J. J. I. J. o. Q. E. Harris, “Analysis of curved optical waveguides by conformal transformation,” vol. 11, no. 2, pp. 75-83, 1975.
    [30] Y. A. Vlasov, and S. J. J. O. e. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” vol. 12, no. 8, pp. 1622-1631, 2004.
    [31] M. Dakss, L. Kuhn, P. Heidrich, and B. J. A. P. L. Scott, “Errata: Grating Coupler for Efficient Excitation of Optical Guided Waves in Thin Films,” vol. 17, no. 6, pp. 268-268, 1970.
    [32] M. Félix Rosa, L. Rathgeber, R. Elster, N. Hoppe, T. Föhn, M. Schmidt, W. Vogel, and M. J. A. i. R. S. Berroth, “Design of a carrier-depletion Mach-Zehnder modulator in 250 nm silicon-on-insulator technology,” vol. 15, pp. 269-281, 2017.
    [33] Z.-Y. Li, D.-X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J.-Z. J. O. e. Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” vol. 17, no. 18, pp. 15947-15958, 2009.
    [34] T. J. N. T. R. Tsuchizawa, “Ultrasmall Silicon photonic devices and integration technology toward photonic-electronic convergence,” vol. 8, 2010.
    [35] S. Kasap, “光電子學 (Kasap : Optoelectronics and Photonics-Principles and Practices, 2/e),” pp. 357-400, 2015.
    [36] S.-H. Hsu, Y. Chen, and H.-Z. J. O. e. You, “Waveguide coupled photodiode using reflector and metal coplanar waveguide for optical triplexing applications,” vol. 18, no. 9, pp. 9303-9313, 2010.
    [37] E. J. T. P. T. Huggins, “Introduction to Fourier optics,” vol. 45, no. 6, pp. 364-368, 2007.
    [38] S. Zhu, Y. Li, T. Hu, Q. Zhong, Y. Dong, Z. Xu, and N. Singh, "Silicon nitride optical phased arrays with cascaded phase shifters for easy and effective electronic control." p. AW4K. 5.
    [39 R.-A. Zhang, T.-S. Lin, W.-T. Liu, S.-H. Hsu, and C.-C. J. A. S. Chang, “Grating lobe-free beam steering through optical phase array using phase-compensated two index-mismatched silicon wires-based emitters,” vol. 10, no. 4, pp. 1225, 2020.
    [40] F. Soltankarimi, J. Nourinia, and C. Ghobadi, "Side lobe level optimization in phased array antennas using genetic algorithm." pp. 389-394.
    [41] Q. Liu, Y. Lu, B. Wu, P. Jiang, R. Cao, J. Feng, J. Guo, and L. Jin, "Silicon Optical Phased Array Side Lobe Suppression Based on an Improved Genetic Algorithm." p. T2D. 3.

    無法下載圖示 全文公開日期 2026/08/23 (校內網路)
    全文公開日期 2031/08/23 (校外網路)
    全文公開日期 2031/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE