簡易檢索 / 詳目顯示

研究生: 洪寬綸
Kuan-luen Hung
論文名稱: 建構於光纖光柵之光纖雷射、光感測與光監控技術之研究
Study on Fiber Laser, Fiber Sensing and Monitoring Technologies Based on Fiber Bragg Gratings
指導教授: 廖顯奎
Shien-kuei Liaw
口試委員: 李三良
San-liang Lee
黃忠偉
Jong-woei Whang
董正成
none
曾孝明
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 77
中文關鍵詞: 光感測光監控光纖光柵光纖雷射
外文關鍵詞: Fiber sensing, In-service monitoring, Fiber Bragg grating, Fiber laser
相關次數: 點閱:201下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製光纖布拉格光柵,介紹其在數個領域的發展及應用,並分別對光纖雷射、光纖感測及網路即時監控三方面進行架構設計及討論分析。首先介紹自製光纖光柵的製作程序,從曝光、退火機制、溫度補償到封裝程序,我們亦展示利用數個自製波長可調光纖光柵涵蓋整個C-band波長之效果,目前自製光纖光柵反射率可達99 %以上,3 dB線寬約為0.25 nm。接著介紹四種共振腔式的光纖雷射,並針對泵激光源的使用效率提出兩種改善架構,在100 mW的泵激光源和3 m的掺鉺光纖下,環型共振腔掺鉺光纖雷射有較佳的旁模抑制比66.78 dB,光纖鏡面共振腔摻鉺光纖雷射和光循環器式線性共振腔掺鉺光纖雷射則有較佳的泵激光源轉換效率,分別是19.1 %及17.62 %。其次,利用光纖光柵為感測端,提出溫度、軸向應力及震動的感測架構設計,其靈敏度分別可達33.1 pm/℃、0.16 nm/0.01 mm、15 pm/degree。並利用光纖雷射取代傳統寬頻光源提升感測精確性,將感測光功率由-21.88 dBm提升至3.1 dBm,3 dB線寬由0.31 nm降至0.06 nm,峰值雜訊比由8.89 dB提高至65.31 dB,減少後續解調發生判讀錯誤的機率。最後,結合光纖光柵和光時域反射儀,針對網路服務品質,提出混成式多通道網路即時監控架構,對不同路徑長度和路徑需求的網路通道做最完善的監控,以切確辨別斷點的路徑和位置。


    In this thesis, we fabricate fiber Bragg gratings (FBGs) and propose several novel configurations in three applications regarding fiber laser, fiber sensing and in-service monitoring. Firstly, introduction of FBG fabrication process includes light exposure, annealing, thermal compensation, and package process. The home-made FBG has reflectivity over 99 % and 3 dB bandwidth of 0.25 nm. We also demonstrate the feasibility of covering the C-band window by using several tunable FBGs. Moreover, we propose four types of cavity fiber laser and two improved frames. Under the condition of 100 mW pump laser and 3 m Erbium doped fiber, optical circulator ring fiber laser has better side mode suppression ratio 66.78 dB while fiber mirror fiber laser and optical circulator linear fiber laser has better transfer efficiency 19.1 % and 17.62 %, respectively. Next using FBGs as sensor heads, we propose sensing system about temperature, strain, and vibration whose sensibility gets 33.1 pm/℃, 0.16 nm/0.01 mm and 15 pm/degree, respectively. Furthermore, replacing traditional broadband light source with fiber laser could raise sensing power from -21.88 dBm to 3.1 dBm and peak-to-noise ratio from 8.89 dB to 65.31 dB and decrease 3 dB line width from 0.31 nm to 0.06 nm. Based on this sensing scheme, the probability of inaccurate judgment would be diminished. Finally, in order to upgrade quality of service in the optical internet we propose hybrid in-service monitor configuration by integrating FBGs with optical time domain reflector. Such configuration could precisely diagnose where the possible broken point happens towards any type of path demand.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 論文架構 3 第二章 光纖布拉格光柵之研製 4 2-1光纖光柵理論分析 4 2-2光纖光柵的製作及退火程序 9 2-3 溫度補償及封裝程序 14 2-4 波長可調式光纖光柵 18 第三章 摻鉺光纖雷射 19 3-1 摻鉺光纖放大原理 19 3-2 摻鉺光纖雷射理論分析 21 3-3 線性共振腔掺鉺光纖雷射 23 3-3.1 雙光纖光柵式共振腔摻鉺光纖雷射 23 3-3.2 光纖鏡面式共振腔摻鉺光纖雷射 25 3-3.3 光循環器式線性共振腔摻鉺光纖雷射 28 3-4 環型共振腔摻鉺光纖雷射 31 3-4.1 光循環器式環型共振腔摻鉺光纖雷射 31 3-4.2 環型光纖雷射泵激光源再利用改善架構 33 3-5 本章小結 36 第四章 光纖光柵感測系統 38 4-1光纖光柵感測簡介 38 4-2光纖光柵參數感測理論分析 39 4-3溫度及軸向應力感測系統 41 4-4 光纖光柵震動感測系統 45 4-5光纖雷射式光纖感測架構設計 49 4-6 本章小結 52 第五章 多通道網路即時監控 53 5-1 光時域反射儀多通道網路即時監控架構 53 5-1.1 實驗架構及監控流程 53 5-1.2 實驗結果 55 5-1.3 問題探討 57 5-2 光纖光柵式多通道網路即時監控架構 57 5-2.1 實驗架構及監控流程 57 5-2.2 實驗結果 59 5-2.3 問題探討 60 5-3 混成式多通道網路即時監控架構 61 5-3.1 實驗架構及監控流程 61 5-3.2 實驗結果 64 5-3.3 問題探討 66 5-4 本章小結 67 第六章 結論與未來展望 68 參考文獻 71

    [1] 林來誠, “光纖光柵製作與應用”, 光連雙月刊, 第6期, 財團法人光電科技工業協進會, 1996.
    [2] 董德國, 陳萬清譯, “光纖通訊”, 台灣東華書局股份有限公司, 民國八十九年六月.
    [3] C. H. Lee, “Passive optical networks for FTTx applications”, OFC/NFOEC 2005, Anaheim, CA, USA, vol. 3, pp. 3, March 2005.
    [4] E. Yahel and A. A. Harky, “Modeling and optimization of short Er-Yb codoped fiber lasers”, IEEE J. of Quantum Electronics, vol. 39, no.11, pp. 1444-1451, November 2003.
    [5] A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques”, Structural Control and Health Monitoring, vol. 12, Issue 3-4, pp. 269-282, July – December 2005.
    [6] 王順民, “光纖光柵多工應變感測系統之製作與研究”, 國立清華大學電機工程研究所碩士論文, 2004.
    [7] A. Habib, S. Fahmy, and B. Bhargava, “Monitoring and controlling QoS network domains”, International J. of Network Management, vol. 15, Issue 1, pp. 11-29, January/February 2005.
    [8] 黃立文, “光纖光柵製作與應用(二)”, 光連雙月刊, 第10期, 財團法人光電科技工業協進會, 1997.
    [9] L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits”, Wiley Interscience, 1995.
    [10] 莊凱評, “先進光纖光柵之製作與特性量測”, 國立交通大學光電工程研究所碩士論文, 2004.
    [11] 陳宣臣, “波長可調光纖光柵之研製與應用”, 國立台灣科技大學電子工程研究所碩士論文, 2004.
    [12] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview”, J. of Lightwave Technol., vol. 15, pp. 1263-1276, 1997.
    [13] S. R. Baker, H. N. Rourke, V. Baker, and D. Godchild, “Thermal decay of fiber Bragg gratings written in boron and germanium co-doped silica fiber”, IEEE/OSA J. of Lightwave Technol., vol. 15, no. 8, pp. 1470-1477, 1997.
    [14] 王俊容, “光纖光柵與光循環器組成之光纖雷射:研製與應用”, 國立台灣科技大學電子工程研究所碩士論文, 2005.
    [15] 葉天傑, “外力式長週期與傳統式短週期光纖光柵的特性分析及實驗量測”, 國立台灣大學機械工程研究所碩士論文, 2002.
    [16] Y. Huang, J. Li, G. Kai, S. Yuan, and X. Dong, “Temperature compensation package for fiber Bragg gratings”, Microwave and Optical Technol. Lett., vol. 39, Issue 1, pp. 70-72, October 2003.
    [17] G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings”, Applied Optics, vol. 34, pp. 6859-6861, 1995.
    [18] A. X. Dong, P. Shum, N. Q. Ngo, C. Zhao, J. Yang, and C. C. Chan, “Bandwidth-tunable FBG filter with fixed center wavelength”, Microwave and Optical Technol. Lett., vol. 41, Issue 1, pp. 22-24, April 2004.
    [19] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehard, “Analytical model for rare-earth-doped fiber amplifier and lasers”, IEEE J. of Quantum Electronics, vol. 30, pp. 1817-1830, 1994.
    [20] 廖協虹, “C+L-Band 摻鉺光纖放大器的研製與應用”, 國立台灣科技大學電子工程研究所碩士論文, 2004.
    [21] H. J. Dutton, “Understanding Optical Communication”, Prentice Hall, 1999.
    [22] 廖顯奎, “光纖放大器及光纖光柵組成裝置之研製及其於分波多工光通信系統之應用”, 國立交通大學光電工程研究所博士論文, 1999.
    [23] S. K. Liaw, H. Y. Tseng, and S. Chi, “Parallel pump-shared linear-cavity lasers array using 980 nm pump reflectors or N pieces of gain fibers as self-equalizers”, IEEE Photon. Technol. Lett., vol. 12, no. 1, pp. 19-21, 2000.
    [24] H. Chen, F. Babin, M. Leblance, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers”, IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 185-187, 2003.
    [25] S. H. Chang, I. K. Hwang, B. Y. Kim, and H. G. Park, “Widely tunable single-frequency Er-doped fiber laser with long linear cavity”, IEEE Photon. Technol. Lett., vol. 13, no. 4, 2001.
    [26] L. M. Tsay and W. F. Liu, “Tunable fiber laser using a fiber loop and a fiber Bragg grating”, Optics and Photonics Taiwan’02, Taipei, Taiwan, R.O.C., pp. 534-536, 2002.
    [27] Q. Mao and J. W. Y. Lit, “Multi-wavelength erbium-doped fiber laser with active overlapping linear cavities”, IEEE J. of Lightwave Technol., vol. 21, pp. 160-169, 2003.
    [28] S. K. Liaw, H. C. Chen, and Y. C. Lai, “C-Band continuously tunable lasers based on fiber Bragg gratings”, Opto-Electronic and Communication Conference 2004, Yokohama, Japan, July 2004.
    [29] S. W. Harun, M. Z. Zulkifli, and H. Ahmad, “A linear cavity S-band Brillouin/Erbium fiber laser”, Laser Physics Lett., vol. 3, Issue 7, pp. 369-371, July 2006.
    [30] Y. W. Somg, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG”, IEEE Photon. Technol. Lett., vol. 13, no. 11, November 2001.
    [31] M. K. Rahman, S. Selvakennedy, P. Poopalan, and H. Ahmad, “Operating wavelength of erbium-doped fiber-ring laser”, Microwave and Optical Technol. Lett., vol. 31, Issue 2, pp. 105-107, October 2001.
    [32] C. X. Shi, “A novel single-mode Er-doped fiber-ring laser: experiment”, Microwave and Optical Technol. Lett., vol. 11, Issue 4, pp. 187-190, March 1996.
    [33] 安毓英, 曾小東, “光學感測與測量”, 台灣五南圖書出版公司, 民國九十三年三月.
    [34] D. Kersey, M. A. Davis, H. J. Patrick, M. L. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Frieble, “Fiber grating sensor”, IEEE J. Lightwave Technol., vol. 15, pp. 1442-1463, Aug 1997.
    [35] A. D. Kersey, “A review of recent developments in fiber optic sensor technology”, Optical Fiber Technol., vol. 2, pp. 291-317, 1996.
    [36] J. W. Goodman, “Fiber Optic Smart Structures”, John Wiley & Sons, 1995.
    [37] J. F. Nye, “Physical Properties of Crystals:Their Presentation by Tensors and Matrices”, Oxford University Press, 1957.
    [38] P. C. Peng, H. Y. Tseng, and S. Chi, “Accurate temperature sensor system based on linear cavity fiber laser array”, IEEE Sensors 2002 Proceedings, vol. 1, pp. 183-186, 2002.
    [39] G. C. Lin, L. Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, “Thermal performance of metal-clad fiber Bragg grating sensors”, IEEE Photon. Technol. Lett., vol. 10, Issue 3, pp. 406-408, March 1998.
    [40] M. Iodice, V. Striano, G. Cappuccino, and G. Cocorullo, “Fiber Bragg grating sensors-based system for strain measurements”, WFOPC.2005, Mondello, Italy, pp. 307-312, June 2005.
    [41] E. J. Friebele, M. A. Putnam, and H. J. Patrick, “Ultrahigh-sensitivity fiber-optic strain and temperature sensors”, Opt. Lett., vol. 23, pp. 222-224, 1998.
    [42] H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities”, IEEE J. Lightwave Technol., vol. 15, no. 4, pp. 647–653, 1997.
    [43] P. C. Peng, H. Y. Tseng, and S. Chi, “A simple fiber Bragg grating sensor system based on a linear-cavity fiber laser”, Microwave and Optical Technol. Lett., vol. 37, Issue 1, pp. 15-17, April 2003.
    [44] Y. Yu and H. Zhao, “A novel demodulation scheme for fiber Bragg grating sensor system”, IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 166-168, 2005.
    [45] D. Y. Stepanov, L. G. Edvell, and M.G. Sceats, “Monitoring of the fiber Bragg grating fabrication process”, OFC.2004, Los Angeles, CA, vol. 2, pp. 3, Feb 2004.
    [46] J. Echevarria, C. Jauregui, A. Quintela, F. J. Madruga, and J. M. Lopez, “Experimental feasibility demonstration of steel structures monitoring using fiber Bragg grating technology”, OFS.2002, Portland, Oregon, vol. 1, pp. 219-222, May 2002.
    [47] K. I. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber”, IEEE J. of Quantum Electronics, vol. QE-17, no. 6, pp. 862-868, pp. 862-868, 1981.
    [48] P. P. Iannone, K. C. Reichmann, N. J. Frigo, J. Laferriere, and A. Champavere, “The effect of reflected and backscattered live traffic on CWDM OTDR measurements”, IEEE Photon. Technol. Lett., vol. 16, no. 7, pp. 1697-1699, 2004.
    [49] 鄧志明, “內含光信號塞取多工器之光纖網路即時監控技術”, 國立台灣科技大學電子工程研究所碩士論文, 2006.
    [50] H. Chen and M. Leblanc, “Reduction of the impairment of online OTDR monitoring by use of a narrow bandwidth OTDR and an optical bandpass filter”, IEEE Photon. Technol. Lett., vol. 16, no. 9, pp. 2198-2200, 2004.
    [51] F. Yamamoto and T. Horiguchi, “A novel in-service measurement technique using the same wavelength band as SCM signals”, J. Lightwave Technol., vol. 18, no 10, pp. 1381-1388, 2000.

    QR CODE