簡易檢索 / 詳目顯示

研究生: 鍾岳晴
Yueh-Ching Chung
論文名稱: 銀奈米島嶼陣列對二氧化鈦光觸媒及紫外光感測器特性影響之研究
The effect of arrays of silver nano-islands on photocatalytic activity and UV sensing property of TiO2 film
指導教授: 周賢鎧
Shyan-Kay Jou
口試委員: 黃柏仁
Bohr-Ran Huang
許正良
Cheng-Liang Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 95
中文關鍵詞: 二氧化鈦氮摻雜二氧化鈦表面電漿共振光觸媒紫外光感測器
外文關鍵詞: titanium dioxide, nitrogen-doping titanium dioxide, surface plasma resonance, photocatalyst, UV photodetector
相關次數: 點閱:679下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用磁控式濺鍍,以石英玻璃作為底材,以反應式濺鍍沉積二氧化鈦及氮化鈦薄膜,其中氮化鈦薄膜再於大氣環境下500 ℃退火處理形成氮摻雜二氧化鈦薄膜。以二氧化鈦及氮摻雜二氧化鈦薄膜作為光觸媒之材料,二氧化鈦薄膜厚度為100 nm、氮摻雜二氧化鈦薄膜厚度為115 nm。另外在薄膜表面及底層沉積不同形貌的銀島嶼陣列,比較銀島嶼陣列對於光觸媒材料之影響。
    二氧化鈦薄膜經XRD分析可得知為銳鈦礦相的結晶結構,經退火形成的氮摻雜二氧化鈦薄膜則為銳鈦礦相及金紅石相混合的結晶結構,由XPS分析得知氮摻雜的二氧化鈦薄膜有0.84 atom.%的氮。
    光觸媒降解實驗以水銀燈作為降解亞甲基藍之光源,純二氧化鈦薄膜的反應速率為-0.081 hr-1,添加以功率10 W濺鍍3秒之銀陣列於二氧化鈦薄膜表面時反應速率為-0.112 hr-1;以功率20 W濺鍍3秒之銀陣列於二氧化鈦底部時反應速率為-0.102 hr-1。氮摻雜二氧化鈦薄膜的反應速率為-0.111 hr-1,銀陣列以功率10 W濺鍍3秒於表面反應速率可達-0.116 hr-1。
    以相同材料系統製作紫外光光感測器於P型熱氧化矽基板上,以指叉圖案作為電極,當不添加任何銀陣列時,氮摻雜二氧化鈦薄膜的上升時間為28.03 s,下降時間為9.79 s;添加退火聚集之銀陣列時,上升時間縮短為10.13 ms,下降時間為0.87ms,但光暗電流比由813降至10.7。其他較連續的銀奈米島嶼結構則因半導體薄膜厚度太薄導致電流選擇流經試片底部的銀,導致通入5 V偏壓時銀陣列越密集的樣品,電流越大且光暗電流差值極小。


    Titanium dioxide and titanium nitride were prepared by magnetron sputtering, and the titanium nitride film was annealed under atmosphere condition with 500 ℃ for 1 hour to form nitrogen-doped titanium dioxide film. The thickness of TiO2 thin film was 100 nm, and nitrogen-doped titanium dioxide was few nanometers thicker than 100 nm. The silver nano-island array was deposited above or under the photocatalyst thin film to compared how the silver nano-island array affect the photocatalyst efficiency.
    The XRD analyst shows the titanium dioxide thin film was completely anatase phase, and the nitrogen-doped titanium dioxide was mixed by anatase and rutile phases. The XPS analyst shows there was 0.84 atom% nitrogen remaining after annealing the titanium nitride film.
    A mercury lamp was used as the light source for methylene blue solution degradation. The reaction rate constant of pure titanium dioxide was -0.08 hr-1. While the silver nano-island array was deposit on the top of titanium dioxide film with sputtering power was 10 W for 3 s, the reaction rate constant was -0.112 hr-1. When silver was deposited with power 20 W for 3 s under titanium dioxide, the reaction rate constant was -0.102 hr-1. And the reaction rate constant of nitrogen-doped titanium dioxide was 0.111 hr-1, nitrogen-doped titanium dioxide with silver sample was -0.116 hr-1.
    The same materials were prepared as UV-photodetector on p-type oxidized silicon, the silver interdigitated electrode was prepared by sputtering with finger mask, both the finger width and the spacing were 200 µm. While not adding any silver nano-island, the rise and fall time of nitrogen-doped titanium dioxide was 28.03 s and 9.79 s, after adding annealed silver nano-island under the nitrogen-doped titanium dioxide, the rise and fall time decrease to 10.13 ms and 0.87 ms. But the ratio of photo current to dark current also decrease from 813 to 10.7 .

    摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 前言 1 第二章 文獻回顧 2 2.1二氧化鈦和氮化鈦 2 2.1.1 二氧化鈦的基本性質 2 2.1.2 氮化鈦的基本性質 4 2.2光觸媒 5 2.2.1光觸媒的原理 6 2.2.2二氧化鈦光觸媒 7 2.2.3 二氧化鈦光觸媒的電子行為 8 2.3.4 二氧化鈦的超親水性 9 2.3 不同元素參雜之二氧化鈦 11 2.3.1金屬元素摻雜二氧化鈦 11 2.3.2非金屬元素摻雜二氧化鈦 14 2.4 紫外光光感測器 20 2.4.1 紫外光感測器特性參數 20 2.4.2 氮化鈦相關之光感測器 22 2.5 金屬奈米結構輔助光觸媒/光感測器 27 2.5.1金屬表面電漿 27 2.5.2 參與化學反應之金屬奈米粒子 30 2.6 研究目的 31 第三章、實驗方法與步驟 32 3.1實驗材料與藥品規格 32 3.2實驗儀器與設備 34 3.2.1實驗用儀器 34 3.2.2磁控式濺鍍系統 35 3.2.3 實驗用分析儀器 36 3.3 分析與鑑定 38 3.3.1 場發射式掃描式電子顯微鏡 38 3.3.2 光譜儀 39 3.3.3 X-ray電子能譜儀 40 3.3.4 X光繞射分析儀 41 3.3.5 光致發光光譜儀 42 3.3.6 接觸角量測儀 43 3.4 實驗步驟 44 3.4.1 基材清洗流程 44 3.4.2 以磁控式濺鍍成長二氧化鈦和氮摻雜二氧化鈦薄膜光觸媒之製備 45 3.4.3 以磁控式濺鍍成長二氧化鈦和氮摻雜二氧化鈦薄膜光感測器之製備 45 3.4.4 光觸媒染料降解 47 3.4.5 染料降解之吸收度分析 49 3.4.6 電性量測 50 第四章 結果與討論 52 4.1 二氧化鈦薄膜之材料分析 52 4.1.1 二氧化鈦薄膜之XRD分析 52 4.1.2 二氧化鈦膜之XPS分析 54 4.1.3 二氧化鈦薄膜之SEM分析 56 4.1.3.1 二氧化鈦之SEM分析 56 4.1.3.2 銀奈米島嶼陣列之SEM分析 57 4.1.4 二氧化鈦薄膜之接觸角分析 60 4.1.5 二氧化鈦薄膜之光學性質分析 62 4.1.5.1 紫外光可見光光譜分析 62 4.1.5.2 光致螢光光譜分析 64 4.2 氮摻雜二氧化鈦之材料分析 66 4.2.1 氮摻雜二氧化鈦之XRD分析 66 4.2.2 氮摻雜二氧化鈦之XPS分析 67 4.2.3 氮摻雜二氧化鈦之SEM分析 71 4.2.4 氮摻雜二氧化鈦之接觸角分析 73 4.2.5 氮摻雜二氧化鈦之光學性質分析 74 4.2.5.1 紫外光可見光光譜分析 74 4.2.5.2 光致螢光光譜分析 75 4.3 二氧化鈦和氮摻雜二氧化鈦薄膜之光觸媒分析 76 4.4 氮摻雜二氧化鈦薄膜之光感測器電性分析 80 4.5 不同波長光源照射水接觸角變化之分析 83 第五章 結論 86 參考文獻 87 附錄 92 JCPDS card 89-4921 92 JCPDS card 01-0562 93 JCPDS card 23-1446 94 JCPDS card 86-0148 95

    參考文獻
    [1] N. T. Nalon, M. K. Seery, and S. C. Pillai, "Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol-Gel Synthesized TiO2 Photocatalysts," Journals of Physical Chemistry C, vol. 113, pp. 16151 - 16157, 2009.
    [2] Y. Hu, H.-L. Tsai, and C.-L. huang, "Effect of brookite phase on the anatase-rutile transition in titania nanoparticles," Journals of the European Ceramic Society, vol. 23, pp. 691-696, 2003.
    [3] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental applications of semiconductor photocatalysis," Chemical Reviews, vol. 95, pp. 69 - 96, 1995.
    [4] O. Carp, C. L. Huisman, and A. Reller, "Photoinduced reactivity of titanium dioxide," Progress in Solid State Chemistry, vol. 32, pp. 33 - 177, 2004.
    [5] P. Anbukarasu, "Pulsed laser deposition of epitaxial titanium nitride on magnesium oxide substrate," presented at the UTRIP, Tokyo, Japan, 2012.
    [6] P. Patsalas, C.Charitidis, and S.Logothetidis, "The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films," Surface and Coatings Technology, vol. 125, no. 1 - 3, pp. 335 - 340, 2000.
    [7] A. Fujishima and K. Honda, "Electrochemical photolysis of water at semiconductor electrode," Nature, vol. 238, pp. 37 - 38, 1972.
    [8] C. Kittel, Introduction to Solid State Physics, 6th Ed. New York: John Wiley, 1986.
    [9] T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, "A comprehensive review of one-dimension metal-oxide nanostructure photodectors," Sensors, vol. 9, no. 8, pp. 6504 - 6529, 2009.
    [10] A. Mills and S. L. Hunte, "An overview of semiconductor photocatalysis," Journal of Photochemistry and photobiology A: Chemistry, vol. 108, no. 1 pp. 1 - 35, 1997.
    [11] K. Nakata and A. Fujishima, "TiO2 photocatalysis: design and applications," Journal of Photochemistry and photobiology C: Photochemistry Reviews, vol. 13, pp. 169 - 189, 2012.
    [12] M. Koelsch, S. Cassaignon, C. T. T. Minh, J.-F. Guillemoles, and J.-P. Jolivet, "Electrochemical comparative study of titanium (anatase, brookite and rutile) nanoparticles synthesized in aqeous," Thin Solid Film, vol. 451 - 452, pp. 86 - 92, 2004.
    [13] S. N. Frank and A. J. Bard, "Heterogeneous photocatalyic oxidation of cyanide ion in aqueous solution at TiO2 powder," Journal of the American Chemical Society, vol. 99, pp. 303 - 304, 1977.
    [14] S. G. Kumar and L. G. Devi, "Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanism on interfacial charge carrier transfer dynamics," The Journal of Physical Chemistry A, vol. 115, no. 46, pp. 13211 - 13241, 2011.
    [15] T. Tachikawa, M. Fujitsuka, and T. Majima, "Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts," The Journal of Physical Chemistry C, vol. 111, no. 14, pp. 5259 - 5275, 2007.
    [16] P. D. Cozzol, R. Comparelli, E.Fanizza, M. C. Curri, and A. Agostiano, "Photocatalytic activity of organic-capped anatase TiO2 nanocrstals in homogeneous organics solutions.," Materials Science and Engineering C, vol. 23, pp. 707 - 713, 2003.
    [17] C. A. Emilio, M. I. Litter, M. Kunst, M. Bouchard, and C. Colbeau-Justin, "Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamic," Langmuir, vol. 22, pp. 3606 - 3613, 2006.
    [18] A. J. Hoffman, E. R. Carraway, and M. R. Hoffmann, "Photocatalytic production of H2O2 organic peroxides on quantum-sized semiconductor colloids," Enviornmental Science and Technology, vol. 28, pp. 776 - 785, 1994.
    [19] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A.Kitamura, M. Shimohigoshi, and T. Watanabe, "Photogeneration of highly amphiphilic TiO2 surface," Advanced Materials, pp. 135 - 138, 1998.
    [20] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A.Kitamura, M. Shimohigoshi, and T. Watanabe, "Light-induced amphiphilic surfaces," Nature, vol. 388, pp. 431 - 432, 1997.
    [21] H. Irie and K. Hashimoto, "Photocatalytic active surface and photo-induced high hydrophilicity/high hydrophobicity," The Handbook of Enviornmental Chemistry, vol. 2, pp. 425 - 450, 2005.
    [22] E. Barbonrini, A. M. Conti, I. Kholmanov, P. Piseri, A. Podestà, P. Milani, O. Sakho, R. Macovez, and M. Sancrotti, "Nanostructured TiO2 films with 2 eV optical gap," Advanced Materials, vol. 17, no. 15, pp. 1842 - 1846, 2005.
    [23] N. Murakami, T. Chiyoya, T. Tsubota, and T. Ohno, "Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength," Applied Catalysis A: General, vol. 348, pp. 148 - 152, 2008.
    [24] W. Choi, A. Termin, and M. R. Hoffmann, "The role of metal ion dopants in quantum-sized TiO2: correlation between photoactivity and charge carrier," Journals of Physical Chemistry, vol. 98, pp. 13669 - 13679, 1994.
    [25] W. Zhu, X. Qiu, V. Iancu, X. Chen, H. Pan, W. Wang, N. V. Dimitrijevic, T. Rajh, H. M. Meryer, M. P. Parathaman, G. M. Stocks, H. H. Weitering, G.Eres, and Z. Zhang, "Band gap narrowing of titanium oxide semicondutors ny nocompenstaed anion-cation codoping for enhanced visible-light photocataactivity," Physical Review Letters, vol. 103, pp. 226401 - 226404, 2009.
    [26] T. Umebayashi, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita, and K. Asai, "Sulfur-doping of rutile-titanium dioxide by ion implantation: photocurent spectroscopy and first-principles band calculation studies," Journal of Applied Physics, vol. 93, pp. 5156 - 5160, 2003.
    [27] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y.Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides," Science, vol. 293, pp. 269 - 271, 2001.
    [28] H. Chen and F. Lu, "Oxidation behavior of titanium nitride films," American Vacuum Society, vol. 23, pp. 1006 - 1009, 2005.
    [29] A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, "Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes," Nano Letters, vol. 6, no. 5, pp. 1080 - 1082, 2006.
    [30] Z. Xie, X. Liu, P. Zhan, W. Wang, and Z. Zhang, "Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in the visible light," Aip Advances, vol. 3, no. 062129, 2013.
    [31] A. M. Czoska, S. Livraghi, M. Chiesa, E. Giamello, G. Granozzi, E. Finazzi, C. D. Valentin, and G. Pacchiono, "The nature of defects in fluorine-doped TiO2," Journals of Physical Chemistry C, vol. 112, pp. 8951 - 8956, 2008.
    [32] H. Irie, Y. Watanabe, and K. Hashimoto, "Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst," Chemistry Letters, vol. 32, no. 8, pp. 772 - 773, 2008.
    [33] Y. Yao, J. Qin, H. Chen, F. Wei, X. Liu, J. Wang, and S. Wang, "One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants," Journal of Hazardous Materials, vol. 291, pp. 28 - 37, 2015.
    [34] M. Sathish, B. Viswanathan, R. P. Viswanath, and C. S. Gopinath, "Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst," Chemistry of Materials, vol. 17, pp. 6349 - 6353, 2005.
    [35] L. Hu, J. Wang, J. Zhang, Q. Zhang, and Z. Liu, "An N-doped anatase/tutile TiO2 hybrid from low-temperature direct nitridization: enhanced photoactivity under UV-/visible-light," ASC Advances, vol. 4, pp. 420 - 427, 2014.
    [36] V. Vaiano, O. Sacco, D. Sannino, and P. Ciambelli, "Nanosructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation," Applied Catalysis B: Environmental, vol. 170 - 171, pp. 153 - 161, 2015.
    [37] X. Zhou, J. Lu, J. Jiang, X. Li, M. Lu, G. Yuan, Z. Wang, M. Zheng, and H. Sep, "Simple fabrication of N-doped mesoporous TiO2 nanorods with the enhanced visible light photocatalytic activity," Nanoscale Research Letters, vol. 9, pp. 34 - 40, 2014.
    [38] J. Wang, C. Fan, Z. Ren, G. Qian, and Z. Wang, "N-doped TiO2/C nanocomposites and N-doped TiO2 synthesised at different thermal treatment temperatures with the same hydrothermal precursor," Dalton Transactions, vol. 43, pp. 13783 - 13791, 2014.
    [39] A. Demeter, F. Samoila, V. Tiron, D. Stanescu, H. Magnan, M. Stracticiuc, I. Burducea, and L. Sirghi, "Visible-light photocatalytic activity of TiOxNy thin films obtained by reactive multi-pulse high power impulse magnetron sputtering," Surface & Coatings Technology, vol. 324, pp. 614 - 619, 2017.
    [40] E. Monroy, F. Omnes, and F.Calle, "Wide-bandgap semiconductor ultraviolet photodetectors," Semiconductor Science and Technology, vol. 18, pp. R33 - R51, 2003.
    [41] E. Bogatin, Signal Integrity: Simplified. Prentice Hall, 2010.
    [42] W. Bunjongpru, P. Panprom, S. Porntheeraphat, R. Meananeatra, W. Jeamsakwiri, A. Srisuwan, W. Chaisriratanakul, E. Chaowicharat, A. Pankiew, C. Hruanum, A. Poyai, and J. Nukeaw, "UV-enhanced Photodetector with nanocrystalline-TiO2 thin film via CMOS compatile process," presented at the IEEE Nanotechnology Materials and Devices Conference, Jeju, Korea, 2011.
    [43] X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei, and S. Ruan, "Metal-semicoductor-metal TiO2 ultraviolet detectors with Ni electrodes," Applied Physics Letters, vol. 94, p. 12352, 2009.
    [44] 吳民耀 and 劉威志. (2006) 表面電漿子理論與模擬. 物理雙月刊. 486 - 496.
    [45] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Materials, vol. 9, pp. 205 - 213, 2010.
    [46] E. Szabo-Bardos, H. Czili, and A. Horcath, "Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface," Journal of Photochemistry and Photobiology A: Chemistry, vol. 154, pp. 195 - 201, 2003.
    [47] E. Szabo-Bardos, E. Petervari, V. El-zein, and A. Horvath, "Photocatalytic decomposition of aspartic acid over bare and silver deposited TiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol. 184, pp. 221 - 227, 2006.
    [48] L. G. Devi and K. M. Reddy, "Photocatalytic performance of silver TiO2: role of electronic energy levels," Applied Surface Science, vol. 257, pp. 6821 - 6828, 2011.
    [49] A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced raman scattering," Journal of Physics: Condensed Matter, vol. 4, pp. 1143 - 1212, 1992.
    [50] 李正中, 薄膜光學與鍍膜技術. 藝軒圖書, 2009.
    [51] 柯賢文, 表面與薄膜處理技術. 全華圖書股份有限公司, 民國 94 年.
    [52] 羅吉宗, 薄膜科技與應用. 全華圖書股份有限公司, 民國 98 年.
    [53] Chemviews. (2012) 100th Anniversary of the Discovery of X-ray Diffraction. ChemistryViews.
    [54] L. Makkonen, "Young’s equation revisited," Journal of Physics: Condensed Matter, vol. 28, pp.135001 2016.
    [55] I. Milosev, H. H. Strehblow, B. Navinsek, and M. Metikos-Hukovic, "Electrochemical and thermal oxidation of TiN coatings studied by XPS," Surface and Interface Analysis, vol. 23, pp. 529 - 539, 1995.

    無法下載圖示 全文公開日期 2022/08/29 (校內網路)
    全文公開日期 2027/08/29 (校外網路)
    全文公開日期 2027/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE