簡易檢索 / 詳目顯示

研究生: 陳幸禹
Hsing-Yu Chen
論文名稱: 氧化鎢及氧化亞銅光觸媒的製備與新型太陽能電池的應用
Preparation of tungsten oxide and cuprous oxide photocatalysts and their application in New Solar Cell
指導教授: 黃炳照
Bing Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
蘇威年
Wei-Nien Su
林智汶
Chi-Wen Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 122
中文關鍵詞: 氧化鎢氧化亞銅光觸媒水熱法電鍍
外文關鍵詞: Tungsten oxide, hydrothermal method and electrodeposition
相關次數: 點閱:204下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過電子束蒸鍍法、溶劑熱法和水熱法製備出不同表面形貌的氧化鎢(WO3)光陽極材料,光電化學分析結果顯示:利用水熱法合成之片狀WO3薄膜擁有最佳的表現,在1.23 V (vs. RHE)下,光電流為0.91 mA/cm2,大於電子束蒸鍍法製備之緻密WO3薄膜的0.69 mA/cm2和溶劑熱法合成之刺蝟狀WO3薄膜的0.77 mA/cm2。
    光陰極材料部分,靠著乳酸的添加,成功製備出以(111)為優選晶面的氧化亞銅(Cu2O)薄膜,其中,乳酸除了扮演穩定銅離子(Cu2+)的螯合劑角色外,同時避免調配電鍍液pH值時,NaOH添加導致氫氧化銅(Cu(OH)2)的沉澱。光電化學分析結果顯示:電鍍6小時,膜厚3 μm之Cu2O薄膜擁有最佳的表現,在0.00 V (vs. RHE)下,光電流為-0.20 mA/cm2。
    最後,將WO3光陽極與Cu2O光陰極應用於本實驗室開發之新型太陽能電池(New Solar Cell, NSC)。NSC之工作原理是利用其可見光光觸媒電極吸收光能後,光觸媒電極表面之光生電子-電洞對可分別與電解質溶液中的電化學活性物質進行氧化與還原反應,藉此將光能轉換成化學能,再透過NSC內建之伽凡尼電池(Galvanic cell)進行放電。在恆電位儀測試下,其最大開環電壓(open circuit voltage, Voc)為0.37 V。此系統之光照面積為0.56 cm2,經過計算得到的最大短路電流密度(short circuit current density, Jsc)為1.33 x 10-3 mA/cm2。
    此外,本研究亦透過對電解液預曝氣的實驗,探討電解液組成對NSC系統的影響,結果說明:在氧氣和氫氣同時充足的狀態下,NSC擁有最佳的表現,最大開環電壓可提高到0.45 V,最大短路電流密度約為3.00 x 10-3 mA/cm2。


    In this work, photoanodes of tungsten oxide(WO3) catalyst with different surface morphologies have been prepared on fluorine-doped tin oxide (FTO) substrates by electron beam evaporation, solvothermal and hydrothermal method. Photoelectric chemical analysis results carried out at 1.23 V vs. reversible hydrogen electrode (RHE) showed that the sheet-like WO3 film synthesized by hydrothermal method has the best performance. It produces a photocurrent of 0.91 mA/cm2 under simulated sun light (AM1.5G, 100 mW/cm2), higher than the current density 0.69 mA/cm2 of dense WO3 film synthesized by electron beam evaporation and 0.77 mA/cm2 of hedgehog-like WO3 films synthesized by solvothermal method.
    In photocathode catalysts part, Cu2O film with (111) preferred orientation was electrodeposited on FTO with the existence of chelating agents(lactic acid). Chelating agents are indispensable in the process of electrodeposition of Cu2O in order to obstruct the precipitation of Cu(OH)2 in alkaline bath and stabilize Cu (II) ions. Photoelectric chemical analysis results showed that Cu2O film of 3 μm thickness has the best performance at 0.00 V (vs. RHE) and it produces a photocurrent of -0.20 mA/cm2.
    Finally, the prepared WO3 photoanode and Cu2O photocathode were applied in New Solar Cell (NSC) system, which has been developed by our lab. Free electron-hole pairs are generated when the photoelectrodes are exposed under solar light. The electrons and holes are capable of reacting with the redox-pairs in the electrolyte of two separate chambers, leading the occurrence of reduction and oxidation in the electrolytes to fuel the intrinsic galvanic cell within the NSC for power generation. After investigation by potential static equipment, the NSC cell has an open circuit voltage of 0.37 V with the exposed area of 0.56 cm2. It was found that the short circuit current density was 1.33 x 10-3 mA/cm2.
    In addition, the effects of the electrolyte composition for the NSC system were also of concern. It was investigated by applying the pre-purge gas in the electrolyte. The results show that NSC has the best performance when the system is under oxygen-rich and hydrogen-rich state at the same time. In this case, the maximum open circuit voltage was able to increase to 0.45 V and short circuit current density was around 3.00 x 10-3 mA/cm2

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XVI 第1章、 緒論 1 1.1. 前言 1 1.2. 光電化學系統應用於太陽光能之轉化 5 1.3. 新型太陽能電池 New Solar Cell (NSC) 6 1.4. 研究動機與目的 11 第2章、 文獻回顧 12 2.1. 太陽能電池的簡介與基本原理 12 2.2. 燃料電池的簡介與基本原理 14 2.3. 光觸媒材料的簡介與應用 16 2.3.1. 光觸媒的發展與特性 16 2.3.2. 可見光光觸媒的必要性 18 2.4. Z-scheme system之光電化學反應 20 2.4.1. 自然界的光化學轉換(Z-scheme system) 20 2.4.2. 雙光子光觸媒系統(Z-scheme system) 21 2.5. 氧化鎢光陽極(WO3 Photoanode) 24 2.5.1. 氧化鎢的晶體結構 24 2.5.2. 氧化鎢的光電特性及其光催化分解水的基本原理 26 2.5.3. 氧化鎢的製備 27 2.6. 氧化亞銅光陰極 (Cu2O Photocathode) 31 2.6.1. 氧化亞銅的晶體結構 31 2.6.2. 氧化亞銅的光電特性及其光催化分解水的基本原理 32 2.6.3. 氧化亞銅的製備 33 第3章、 實驗部分 38 3.1. 實驗流程圖 38 3.2. 實驗儀器 40 3.3. 實驗藥品 41 3.4. 實驗步驟 42 3.4.1. FTO導電玻璃基板清洗 42 3.4.2. 氧化鎢電子束蒸鍍法( Electron Beam Evaporation) 43 3.4.3. 氧化鎢溶劑熱法( Solvothermal method) 44 3.4.4. 氧化鎢水熱法(Hydrothermal method) 46 3.4.5. 氧化亞銅電鍍法-I(Electro-deposittion-I) 47 3.4.6. 氧化亞銅電鍍法-II(Electro-deposittion-II) 49 3.4.7. 新型太陽能電池(NSC)的封裝與光電性質測試 50 3.5. 材料鑑定與分析 53 3.5.1. 掃描式電子顯微鏡(SEM) 53 3.5.2. X光能量色散圖譜分析(EDS) 53 3.5.3. XRD繞射分析 53 3.5.4. 紫外、可見光光譜儀(Ultraviolet–visible spectroscopy,UV-Vis) 54 3.5.5. 拉曼光譜儀(Raman spectroscope) 54 3.6. 材料光電化學特性測試 55 3.6.1. 線性掃描伏安法(Linear sweep voltammetry) 55 3.6.2. 循環伏安分析(Cyclic voltammetry) 55 3.6.3. 計時安培分析法(Chrono amperometry) 55 3.6.4. 交流阻抗分析(AC impedance) 55 第4章、 結果與討論 60 4.1. 光陽極之材料及光電化學分析 60 4.1.1. 電子束蒸鍍法製備之氧化鎢薄膜 60 4.1.2. 溶劑熱法製備之氧化鎢薄膜 66 4.1.3. 水熱法製備之氧化鎢薄膜 74 4.2. 光陰極之材料及光電化學分析 83 4.2.1. 電鍍法-I製備之氧化亞銅薄膜 83 4.2.2. 電鍍法-II製備之氧化亞銅薄膜 89 4.3. NSC光電化學表現 101 第5章、 結論 107 第6章、 未來展望 108 第7章、 參考文獻 110 附錄 117

    [1] M. Emst, Global average temperature and carbon dioxide concentrations, 1880-2010, The Woods Hole Research Center, (2010).
    [2] E. U.S. Energy Information Administration, Annual energy review 2000. (2001).
    [3] E. U.S. Energy Information Administration, Annual energy review 2011. (2012).
    [4] REN21, Renewables 2013 global status report. Renewable Energy Policy Network for 21st Century (2013).
    [5] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society reviews, 38 (2009) 253-278.
    [6] S. Bensaid, G. Centi, E. Garrone, S. Perathoner, G. Saracco, Towards artificial leaves for solar hydrogen and fuels from carbon dioxide., ChemSusChem, 5 (2012) 500-521.
    [7] 黃文慶, Research and module design of visible-light photocatalyst driven new solar cell system, National Taiwan University of Science and Technology - Chemical Engineering, 2012.
    [8] Originally published in the March/April 2009 issue of GreenSource.
    [9] E. Becquerel, Memoire sur les effets electriques produits sous l'influence des rayons solaires., Comptes rendus de l'Academie des Sciences, 9 (1839) 561-567.
    [10] L. Wang. Preparation and characterization of properties of electrodeposited copper oxide films. The university of texas at arlington, (2006 December ).
    [11] Fuel Cell. http://en.wikipedia.org/wiki/Fuel_cell.
    [12] Albris, Diagram of a proton conducting solid oxide fuel cell., (2010).
    [13] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
    [14] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, Journal of Physical Chemistry, 81 (1977) 1484-1488.
    [15] 李曉平,徐寶琨,劉國範等, 功能材料, 30 (1999) 242~245.
    [16] 周祖飛,蔣偉川,劉維屏, 環境科學, 18 (1997) 35~37.
    [17] 孫奉玉,吳鳴,李文釧等, 催化學報, 19 (1998) 121~124.
    [18] 陳士夫,趙夢月,陶耀武等, 環境科學, 17 (1996) 33~35.
    [19] 陳耀武,趙孟月,陳士夫等, 催化學報, 18 (1997) 345~347.
    [20] Q. Zhang, L. Gao, J. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis., Applied Catalysis B: Environmental, 26 (2000) 207-215.
    [21] O. Ken-ichi., Y. Yasunori., H. Tanaka, M. Tanaka, A. Itaya, Heterogeneous photocatalytic decomposition of phenol over TiO2 powder., Chemical Society of Japan, 58 (1985) 2015-2022.
    [22] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.
    [23] K. Akihiko, Photocatalyst materials for water splitting., Catalysis Surveys from Asia, 7 (2003) 31-38.
    [24] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 38 (2009) 253-278.
    [25] 陳泓明, Synthesis of nanocrystalline CuFeO2 by ion-exchange method and its applications on hydrogen generation via visible-light-driven photocatalytic water splitting., National Taiwan University of Science and Technology - Chemical Engineering, (2010).
    [26] 江冠廷, CuFeO2 photocatalysts prepared by modified ion exchange method and its applications on hydrogen generation via visible-light-driven water splitting., National Taiwan University of Science and Technology - Chemical Engineering, (2011).
    [27] V. Ochie, Solar Light Driven Photocatalyst Bi20TiO32: Synthesis and Photocatalytic Activity toward Water Oxidation., National Taiwan University of Science and Technology - Chemical Engineering, (2011).
    [28] J. Manassen, D. Cahen, G. Hodes, A. Sofer, Electrochemical, solid state, photochemical and technological aspects of photoelectrochemical energy converters, Nature, 263 (1976) 97-100.
    [29] B. Mills Model of the unit cell of rhenium trioxide, ReO3. http://commons.wikimedia.org/wiki/File:Rhenium-trioxide-unit-cell-3D-balls-A.png.
    [30] P.M. Woodward, A.W. Sleight, Ferroelectric tungsten trioxide, JOURNAL OF SOLID STATE CHEMISTRY, 131 (1997) 9-17.
    [31] X. Liu, F. Wang, Q. Wang, Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting, Physical Chemistry Chemical Physics, 14 (2012) 7894-7911.
    [32] B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, Journal of Solid State Chemistry, 29 (1979) 429-434.
    [33] S.S. Kalanur, Y.J. Hwang, S.Y. Chae, O.S. Joo, Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity, Journal of Materials Chemistry A, 1 (2013) 3479-3488.
    [34] E. Salje, K. Viswanathan, Physical properties and phase transitions in WO3, Acta Crystallographica Section A, 31 (1975) 356-359.
    [35] R. Gehlig, E. Salje, Dielectric properties and polaronic conductivity of WO3 and WxMo1−xO3, Philosophical Magazine Part B, 47 (1983) 229-245.
    [36] N.R. de Tacconi, C.R. Chenthamarakshan, G. Yogeeswaran, A. Watcharenwong, R.S. de Zoysa, N.A. Basit, K. Rajeshwar, Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates:  influence of process variables on morphology and photoelectrochemical response, The Journal of Physical Chemistry B, 110 (2006) 25347-25355.
    [37] B. Yang, Y. Zhang, E. Drabarek, P.R.F. Barnes, V. Luca, Enhanced photoelectrochemical activity of sol−gel tungsten trioxide films through textural control, Chemistry of Materials, 19 (2007) 5664-5672.
    [38] F. Amano, D. Li, B. Ohtani, Photoelectrochemical property of tungsten oxide films of vertically aligned flakes for visible-light-induced water oxidation, Journal of The Electrochemical Society, 158 (2011) K42.
    [39] F. Amano, D. Li, B. Ohtani, Fabrication and photoelectrochemical property of tungsten(vi) oxide films with a flake-wall structure, Chemical Communications, 46 (2010) 2769-2771.
    [40] Z. Jiao, J. Wang, L. Ke, X.W. Sun, H.V. Demir, Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties, Appl Mater Interfaces, 3 (2011) 229-236.
    [41] L.O. Grondahl, The copper-cuprous-oxide rectifier and photoelectric cell, Reviews of Modern Physics, 5 (1933) 141-168.
    [42] apos, M. Keeffe, W.J. Moore, Electrical conductivity of monocrystalline cuprous oxide, The Journal of Chemical Physics, 35 (1961) 1324-1328.
    [43] R.S. Toth, R. Kilkson, D. Trivich, Electrical conductivity of single-crystal cuprous oxide at high temperatures, Physical Review, 122 (1961) 482-488.
    [44] H.L. McKinzie, M. O'Keeffe, High temperature hall effect in cuprous oxide, Physics Letters A, 24 (1967) 137-139.
    [45] A.P. Young, C.M. Schwartz, Electrical conductivity and thermoelectric power of Cu2O, Journal of Physics and Chemistry of Solids, 30 (1969) 249-252.
    [46] A.E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous oxide—a review, Solid-State Electronics, 29 (1986) 7-17.
    [47] A.O. Musa, T. Akomolafe, M.J. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties, Solar Energy Materials and Solar Cells, 51 (1998) 305-316.
    [48] T. Mahalingam, J.S.P. Chitra, S. Rajendran, M. Jayachandran, M.J. Chockalingam, Galvanostatic deposition and characterization of cuprous oxide thin films, Journal of Crystal Growth, 216 (2000) 304-310.
    [49] R.P. Wijesundera, Electrodeposited Cu2O thin films for fabrication of CuO/Cu2O heterojunction, (2011).
    [50] KAN Zhilan, SHI Dawei, WU Meiling, LI Minyi, XIAO Haibo, Y. Changping, Preparation of P-type and N-type Cu2O film by electrochemical deposition, Journal of Pingdingshan University, 29 (2014).
    [51] H.R. Schoppel, H. Gerischer, Die kathodische reduktion von Cu-I-oxid-elektroden als beispiel fur den mechanismus der reduktion eines Halbleiter-Kristalls, Berichte der Bunsengesellschaft fur physikalische Chemie, 75 (1971) 1237-1239.
    [52] H. Gerischer, On the stability of semiconductor electrodes against photodecomposition, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 82 (1977) 133-143.
    [53] M. Takeuchi, F.L. Weichman, K. Morosawa, M. Kawakami, H. Nagasaka, Photoelectrochemical behavior of Cu2O single crystals in liquid electrolytes, Applied Surface Science, 33–34 (1988) 972-979.
    [54] D. Ng, T. Sen, F. Gao, H. Liang, Friction and wear-mode comparison in copper electrochemical mechanical polishing, Journal of The Electrochemical Society, 155 (2008) H520-H524.
    [55] A.E. Rakhshani, A.A. Al-Jassar, J. Varghese, Electrodeposition and characterization of cuprous oxide, Thin Solid Films, 148 (1987) 191-201.
    [56] A.E. Rakhshani, J. Varghese, Potentiostatic electrodeposition of cuprous oxide, Thin Solid Films, 157 (1988) 87-96.
    [57] A.E. Rakhshani, J. Varghese, Surface texture in electrodeposited films of cuprous oxide, J Mater Sci, 23 (1988) 3847-3853.
    [58] T.D. Golden, M.G. Shumsky, Y. Zhou, R.A. VanderWerf, R.A. Van Leeuwen, J.A. Switzer, Electrochemical deposition of copper(I) cxide films, Chemistry of Materials, 8 (1996) 2499-2504.
    [59] Y. Zhou, J.A. Switzer, Electrochemical deposition and microstructure of copper (I) oxide films, Scripta Materialia, 38 (1998) 1731-1738.
    [60] Z. Zhang, W. Hu, Y. Deng, C. Zhong, H. Wang, Y. Wu, L. Liu, The effect of complexing agents on the oriented growth of electrodeposited microcrystalline cuprous oxide film, Materials Research Bulletin, 47 (2012) 2561-2565.
    [61] C.J. Engel, T.A. Polson, J.R. Spado, J.M. Bell, A. Fillinger, Photoelectrochemistry of porous p-Cu2O films, Journal of The Electrochemical Society, 155 (2008) F37-F42.
    [62] K. Han, M. Tao, Electrochemically deposited p–n homojunction cuprous oxide solar cells, Solar Energy Materials and Solar Cells, 93 (2009) 153-157.
    [63] J.-Y. Ho, M.H. Huang, Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity, The Journal of Physical Chemistry C, 113 (2009) 14159-14164.
    [64] A. Lasia, Electrochemical impedance spectroscopy and its applications, in: B.E. Conway, J.O.M. Bockris, R. White (Eds.) Modern Aspects of Electrochemistry, Springer US(2002), pp. 143-248.
    [65] A. Ng, X. Liu, A.B. Djurišić, A.M.C. Ng, W.K. Chan, Effect of transition metal oxide anode interlayer in bulk heterojunction solar cells, 2013, pp. 86261V-86261V-86266.
    [66] V. Chakrapani, J. Thangala, M.K. Sunkara, WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production, International Journal of Hydrogen Energy, 34 (2009) 9050-9059.
    [67] M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, M. Figlarz, Infrared and raman study of WO3 tungsten trioxides and WO3,xH2O tungsten trioxide tydrates, Journal of Solid State Chemistry, 67 (1987) 235-247.
    [68] T. Akira, M. Kenji, Raman study on sol-gel derived tungsten oxides from tungsten ethoxide, Japanese Journal of Applied Physics, 30 (1991) L1508.
    [69] P.J. Barczuk, A. Krolikowska, A. Lewera, K. Miecznikowski, R. Solarska, J. Augustynski, Structural and photoelectrochemical investigation of boron-modified nanostructured tungsten trioxide films, Electrochimica Acta, 104 (2013) 282-288.
    [70] S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy & Environmental Science, 4 (2011) 1781-1787.
    [71] Z. Zhang, P. Wang, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy, Journal of Materials Chemistry, 22 (2012) 2456.
    [72] H. Sekhar, D. Narayana Rao, Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles, Journal of Nanoparticle Research, 14 (2012).
    [73] S. Wang, Q. Huang, X. Wen, X.-y. Li, S. Yang, Thermal oxidation of Cu2S nanowires: A template method for the fabrication of mesoscopic CuxO (x = 1,2) wires, Physical Chemistry Chemical Physics, 4 (2002) 3425-3429.
    [74] F. Wu, Y. Myung, P. Banerjee, Unravelling transient phases during thermal oxidation of copper for dense CuO nanowire growth, CrystEngComm, 16 (2014) 3264.
    [75] T. Jin, P. Diao, Q. Wu, D. Xu, D. Hu, Y. Xie, M. Zhang, WO3 nanoneedles/α-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting, Applied Catalysis B: Environmental, 148–149 (2014) 304-310.

    QR CODE