簡易檢索 / 詳目顯示

研究生: 陳晉凱
Jin-Kai Chen
論文名稱: 基於波長掃描與特殊峰值檢測以提升分散式光纖光柵感測效能之研究
Performance enhancement of distributed fiber Bragg grating (FBG) sensing systems applying wavelength-swept lasers and specialized peak detection methods
指導教授: 宋峻宇
Jiun-Yu Sung
廖顯奎
Shien-Kuei Liaw
口試委員: 廖顯奎
Shien-Kuei Liaw
李三良
San-Liang Lee
宋峻宇
Jiun-Yu Sung
謝振傑
Jen-Je Chieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 光纖感測器光纖布拉格光柵峰值檢測光纖光學光學感測溫度感測
外文關鍵詞: Fiber optical sensor, Fiber Bragg grating, Peak detection, Fiber optics, Optical sensing, Temperature sensing
相關次數: 點閱:505下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光纖布拉格光柵(FBG)具有使用簡單、靈敏度高以及尺寸小等優點常被用於光纖感測系統中,波長感測是FBG感測系統中的一種方式,在FBG感測系統中,精確度取決於波長的峰值檢測的準確度,在過去數十年中,已經有許多種的峰值檢測方法被研究出,例如:濾波和曲線擬合方法,這些方法在雜訊上不敏感,並且在低取樣率下有更好的感測精確度,但是這些方法對於處理資料的複雜度卻比較高。在網路快速進步的時代下,對於物聯網以及人工智能上更需要大量的感測器,因此需要降低處理資料複雜的複雜度,在需要大量的感測器的情況下,一種具有自同步以及方便安裝的系統則對於科技有著一大進步。本論文提出了一種峰值檢測方法以及自同步且安裝簡便的FBG感測系統。
    首先說明光纖技術發展以及光纖感測的優點,再說明研究動機以及論文架構。介紹FBG的原理以及製作方法,再說明光纖感測技術。然後介紹提出一種具有多個感測單元的自同步FBG感測系統,先介紹論文的實驗架構以及元件的原理,再說明改變不同的溫度下,實驗中設定的溫度從85℃到131.6℃(高溫範圍)以及56℃到64.5℃(低溫範圍),所得出的實驗結論,並且執行了改變偏振下的影響,最後得到在溫度估計方面誤差在高溫及低溫情況下別為2.5℃以及0.5℃,靈敏度也是0.14及0.13℃/ms,而在架構上理論可以接上8個遠端感測單元(RSU),單個SPU系統只能接上1個RSU的情況下,更是能裝上35個感測的FBG。
    最後,峰值檢測的原理以及實驗的方法,說明我們在實驗執行上的研究方法以及比對其他峰值檢測方法中所提出來的優勢,再用實驗來驗證此種方式是否可行,在實驗後,我們得到在性能上略為不足,可是在計算資源以及硬體上卻少了許多,而精確度比其他算法提高了34%。


    Fiber Bragg grating (FBG) has the advantages of simple use, high sensitivity and small size. It is often used in fiber sensing systems. Wavelength sensing is a method in FBG sensing systems. In FBG sensing systems, accuracy depends on the accuracy of wavelength peak detection. In the past few decades, many peak detection methods have been developed, such as filtering and curve fitting methods. These methods are not sensitive to noise and perform at low sampling rates. It has better sensing accuracy at low rates, but these methods have higher complexity for processing data. In the era of rapid advancement of the Internet, a large number of sensors are needed for the Internet of things and artificial intelligence. Therefore, it is necessary to reduce the complexity of processing data. This paper proposes a peak detection method and a self-synchronizing and easy-to-install FBG sensing system.
    First, explain the development of optical fiber technology and the advantages of optical fiber sensing, and then explain the research motivation and the structure of the paper. Introduce the principle and production method of FBG, and then explain the optical fiber sensing technology. Then introduce a self-synchronization FBG sensing system with multiple sensing units is proposed. The experimental architecture and the principle of the components are introduced first, and then the temperature set in the experiment is changed from 85 to 131.6°C (high temperature ) and 56 to 64.5°C (low temperature ), and the effect of changing the polarization is performed, and finally the error in temperature estimation is 2.5°C and 0.5°C under high temperature and low temperature conditions. Sensitivity It is also 0.14 and 0.13°C/ms, and theory of the architecture can be connected to 8 remote sensing units (RSU). When a single SPU system can only be connected to 1 RSU, 35 FBG can be installed.
    Finally, introduce the principle of peak detection and experimental methods, explain our research methods in the implementation of the experiment and compare the advantages proposed in other peak detection methods, and then use experiments to verify whether this method is feasible. After the experiment, the performance is slightly insufficient, but the computing resources and hardware are much less, and the accuracy is improved by 34% compared with other algorithms.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 光纖感測原理 4 2.1光纖感測技術 4 2.1.1 分佈式光纖感測技術 5 2.1.2 逐點式光纖感測技術 6 2.1.3 感測技術比較 7 2.2 光纖布拉格光柵的原理以及製作過程 7 2.2.1 光纖布拉格光柵原理 7 2.2.2 光纖布拉格光柵的製作 10 第三章 具有自動同步以及波長掃描的光纖光柵的感測系統 12 3.1實驗架構以及光學元組件與儀器介紹 12 3.1.1實驗架構與操作 12 3.1.2光學被動元件 15 3.1.3 光學主動元件 24 3.1.4 儀器設備 24 3.2 文獻探討 27 3.3 實驗流程 30 3.4 實驗結論 35 第四章 降低採樣率和計算複雜度的光學傳感精確峰值檢測 37 4.1 峰值檢測原理以及方法分析 37 4.2 文獻參考與分析 39 4.3 實驗步驟 42 4.4 實驗結論 54 第五章 結論與未來展望 55 5.1 結論 55 5.2 未來展望 56 參考文獻 57

    [1] 廖顯奎,徐桂珠,許光裕著,“當代光纖通訊”,高立圖書有限公司,2012。
    [2] 游易霖,“長波長環形摻鉺光纖雷射特性分析與優化”,台灣科技大學電子工程研究所碩士論文,2009。
    [3] S. Aleksic,“A survey on optical technologies for IoT, smart industry, and smart infrastructures.”,Journal of Sensor and Actuator networks 8.3 (2019): 47.
    [4] 楊書銘,“布里淵光時域分析法之感測距離及靈敏度優化研究“ ,台灣科技大學電子工程研究所碩士論文,2018。
    [5] 許安峰,“同調檢測之相位靈敏光時域反射儀研究與設計“ ,台灣科技大學電子工程研究所碩士論文,2020。
    [6] G. Keiser ,“Optical Fiber Communications”, Tata McGRAW HILL,2008.
    [7] 董德國, 陳萬清譯, “光纖通訊,” 台灣東華書局股份有限公司, 2000。
    [8] S. M. Melle, K. Liu, and R. M. Measures. ,“A passive wavelength demodulation system for guided-wave Bragg grating sensors.”IEEE Photonics Technology Letters 4.5 (1992).
    [9] R. Cheng, L. Xia, Y. Ran, J. Rohollahnejad, J. Zhou, & Y. Wen, “Interrogation of ultrashort Bragg grating sensors using shifted optical Gaussian filters.”,IEEE Photonics Technology Letters, 27.17(2015).
    [10] A. D. Kersey,T. A. Berkoff, & W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection.”, Electronics Letters, 28.3(1992).
    [11] V. Chandra, U. Tiwari., & B. Das,“Elimination of light intensity noise using dual-channel scheme for fiber MZI-based FBG sensor interrogation. ”,IEEE Sensors Journal, 16.8,(2016).
    [12] J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin &S. Jian,“Switchable optoelectronic oscillator using an FM-PS-FBG for strain and temperature sensing.“, IEEE Photonics Technology Letters, 29.23, (2017).
    [13] M. Li,W. Li, J. Yao, &J. Azaña,“Femtometer-resolution wavelength interrogation using an optoelectronic oscillator.“, In IEEE Photonics Conference 2012 (pp. 298-299).
    [14] D. Tosi,“Review and analysis of peak tracking techniques for fiber Bragg grating sensors.”, Sensors, 17.10,(2017).
    [15] K. C. Kao, &G. A. Hockham,“Dielectric-fibre surface waveguides for optical frequencies. ”,In Proceedings of the Institution of Electrical Engineers .Vol. 113, No. 7, pp. 1151-1158.1966.
    [16] V. Kaur, &S. Singh,“Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection. ”,Journal of Nanophotonics, 13.2(2019).
    [17] J. Janting, J. K. M. Pedersen, G. Woyessa,K. Nielsen, &O. Bang,“ Small and robust all-polymer fiber Bragg grating based pH sensor. “,Journal of Lightwave Technology, 37.18(2019).
    [18] X. W. Ye,Y. H. Su, &J. P. Han, “Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review. ”, The Scientific World Journal, 2014.
    [19] A. M. R. Pinto,M. Lopez-Amo,J. Kobelke, &K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror. ”,Journal of lightwave technology, 30.8(2012).
    [20] 陳柏偉,“液體多參數感測之元組件開發與系統量測“ ,台灣科技大學電子工程研究所碩士論文,2016。
    [21] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, & J. Albert,“Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask.“ Applied Physics Letters, 62.10(1993).
    [22] 陳柏戎,“低成本光纖感測系統:設計與應用“ ,台灣科技大學電子工程研究所碩士論文,2017。
    [23] 賴郁竹,“多參數光纖光柵液體感測研製“ ,台灣科技大學電子工程研究所碩士論文,2014。
    [24] Z. Bai,W. Zhang,S. Gao,H. Zhang,L. Wang,Y. Liu, &T. Yan,“Simultaneous measurement of strain and temperature using a long period fiber grating based on waist-enlarged fusion bitapers. ”,Journal of Optics, 16.4, 2014.
    [25] 畢衛紅, & 張闖, “光纖 Bragg 光柵的反射特性研究. ”,傳感器技術, 22.8, 2003。
    [26] 蔡孟軒,“布李淵光時域分析系統之解析度與雙參數量測優化“ ,台灣科技大學電子工程研究所碩士論文,2020。
    [27] N.A.N. Jaharudin,N. A. Cholan,M. A. Omar,S. T. S. Al-Musawi,R. Talib, & N. H. Ngajikin,“Enhanced Sensitivity of Temperature Sensor with Transmitted Light of Fiber Bragg Grating. ”,In 2019 IEEE International Conference on Sensors and Nanotechnology ,pp. 1-4,(2019).
    [28] Y. Chen,Q. Han,W. Yan,Y. Yao, &T. Liu, “Magnetic field and temperature sensing based on a macro-bending fiber structure and an FBG.”, IEEE Sensors Journal, 16.21,(2016).
    [29] R. Konoike,K. Suzuki,T. Inoue,T. Matsumoto,T. Kurahashi,A. Uetake, & K. Ikeda, “ SOA-integrated silicon photonics switch and its lossless multistage transmission of high-capacity WDM signals. ”,Journal of Lightwave Technology, 37.1, (2018).
    [30] J. Y. Sung,J. K. Chen,S. K. Liaw,H. Kishikawa, &N. Goto, “Fiber Bragg grating sensing system with wavelength-swept-laser distribution and self-synchronization.” ,Optics Letters, 45.19,2020.
    [31] J. Jiang, T. Liu, K. Liu, &Y. Zhang,“ Investigation of peak wavelength detection of fiber Bragg grating with sparse spectral data. ”,Optical Engineering, 51.3(2012).
    [32] A. Othonos,K. Kalli, D. Pureur, &A. Mugnier, “5 Fibre Bragg Gratings.“(1999).
    [33] T. Zeh,“ Optical fiber Bragg sensors: Measurement systems and signal processing. ”,Shaker,2005.
    [34] F. Blais,M. Lecavalier,&J. Bisson, “Real-time processing and validation of optical ranging in a cluttered environment.” ,ICSPAT, Boston, MA, 1996.
    [35] Y. Chen,K. Yang, &H. L. Liu,“ Self-adaptive multi-peak detection algorithm for FBG sensing signal. ”,IEEE Sensors Journal, 16.8,(2016).
    [36] Y. Yang, J. Wu,M. Wang,Q. Wang,Q. Yu, &K. P. Chen,“Fast demodulation of fiber Bragg grating wavelength from low-resolution spectral measurements using Buneman Frequency Estimation. ”,Journal of Lightwave Technology, 38.18,(2020).
    [37] J. Y. Sung,J. K. Chen,S. K. Liaw, &H. Kishikawa,“ Accurate Peak Detection for Optical Sensing with Reduced Sampling Rate and Calculation Complexity.”, Sensors, 21.7, 2021.
    [38] 郭永興, 匡毅, 熊麗, 劉文龍, & 吳恆,“ 不同封裝方式的光纖光柵傳感與溫補特性. 激光與光電子學進展”,55.11, 2019.

    無法下載圖示 全文公開日期 2026/09/13 (校內網路)
    全文公開日期 2026/09/13 (校外網路)
    全文公開日期 2026/09/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE