簡易檢索 / 詳目顯示

研究生: 張愷順
Kai-Shuen Chang
論文名稱: 單染料雙放光法應用於溫度感測循跡微粒之熱流場量測技術之研發
Development of the single-dye two-color laserinduced fluorescence for the whole-field thermometry and velocimetry technique using temperature-sensitive particles
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 溫琮毅
Tsrong-Yi Wen
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 102
中文關鍵詞: 單染料雙放光法溫度感測循跡微粒
外文關鍵詞: One-Dye Two-Color Method, Temperature Sensitive Particles
相關次數: 點閱:167下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用單染料雙放光法研製一種新型的溫度感測微粒,以消除溫度感測材料濃度不均與激發光照不均之問題。對各別微粒在微流經流道不同位置時之溫度與速度進行計算,以利用於量測微流道內流體之溫度與速度。本研究將量子點CsPbBr3塗覆於聚醯胺微粒上,製備成具有溫度敏感性之溫度感測微粒,並以加熱之微流道實測溫度變化以驗證技術之可行性。微流道之溫度驗證則使用熱電偶量測配合數值模擬結果求得之流道中央溫度與反算之溫度做比較。所製備之微粒溫度敏感性透過光譜儀於溫度範圍25~65 (℃ ) 時測出為 1544.5 ~ 1717.9 (K),在溫度範圍 40~50 (℃) 時為1558.7 ~ 1790.7 (K)。研究中進一步記錄微粒流動至一具有溫度差 (約40~50 ℃) 之流道內不同位置時32顆微粒之相關參數,其中將微粒平均強度與最大光強度代入單染料雙放光公式後即得對應的二條溫度校正趨勢線,其斜率分別為3463.9 (K) 及7511.3 (K);而透過溫度校正趨勢線計算出來的溫度梯度趨勢線斜率分別為 -1.10 (℃/mm) 及 - 0.81 (℃/mm),驗證溫度變化趨勢與微流道溫度梯度趨勢呈現正相關。製備之溫度感測微粒與矽油之混合液於百萬分點濃度為0.065 (ppm),在此低濃度下於溫度敏感波段與溫度不敏感波段所對應的影像取完平均後之訊雜比多數集中在20~50,顯示在低濃度下微粒仍具有一定的訊雜比。溫度梯度趨勢線之標準差較大,原因推測為實驗中之長曝光時間設定造成微粒影像被拉長而使光強度計算之準確度較低,進而造成部份反算結果不佳。 另由數值模擬而得之流道內溫度梯度約為 - 4.5 (℃/mm),而微流道溫度校正實測中所得之溫度梯度為 - 1.91 (℃/mm)。較靠近流道入口處的熱電偶實測的溫度比模擬結果高,而較靠近流道出口處的熱電偶實測的溫度比模擬結果低。原因推測來自微流道之軸向熱傳現象,亦即流道壁面熱傳導大於流體熱對流,使近流道入口區的流體透過壁面熱傳導所得到的熱通量較多所致。


    In this study, a novel type temperature-sensitive particles is developed using the one-dye two-color method to overcome the nonuniformity issues of coated temperature-sensitive material and excitation source. Indivisual particles are traced at different positions in the microchannel, and the temperature and velocity of the fluid can be obtained by calculating these particle’s velocities and temperatures. Quantum Dot (QD) of CsPbBr3 was coated on the polyimde particles to make the particle temperatue-sensitive, and a heated micronchannel was used for verification of the concept. The verification is done by comparing the calculated temperature with the temperature in the microchannel estimated from thermocouple measurements and numerical simulation. The temperature sensitivity of the temperature-sensitive particles measured by spectrometer in the temperature range of 25~65 (°C) is at 1544.5~1717.9 (K), and in the temperature range of 40~50 (°C) is at 1558.7~1790.7 (K). Parameters of 32 particles were recorded and traced at different locations in the microchannel with a temperature difference of about 40-50 °C. The average and maximum intensity of the particles were used in the single-dye two-color equation to obtain two temperature calibration trend lines with slopes of 3463.9 (K) and 7511.3 (K), respectively. The slope of the temperature gradient trend line calculated from the temperature calibration trend line is - 1.10 (°C/mm) and - 0.81 (°C/mm) respectively, which shows that the temperature trend is correlated with the microchannel temperature gradient trend. In this study, the concentration of temperature-sensitive particles and silicone oil mixture was 0.065 ppm, and the SNR after averaging were found to be mostly in the range of 20 to 50. These results indicate that the particles have a high enough SNR for operation at the concentration. Large standard deviation of the temperature gradient trend line was found because the particle images were recorded with a long exposure time setting, resulting in an elongated particle image and lower accuracy of the light intensity calculations, which leads to the worse inverse-calculation results. The simulated temperature gradient in the microchannel was - 4.5 (°C/mm), while the temperature gradient obtained through experiment was - 1.91 (°C/mm). The temperature measured by thermocouple closer to the inlet area is higher than the simulated result, while closer to the outlet area of the flow channel it is lower. This difference may due to the axial heat conduction phenomenon of the microchannel, i.e., the effect of heat conduction at the channel wall is larger than the effect of heat convection of the fluid, causing the difference in the heat flux obtained by the fluid.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第1章 緒論 2 1.1 研究動機 2 1.2 文獻回顧 2 1.2.1 溫度感測染料 2 1.2.1.1 溫度感測材料 3 1.2.1.2 量子點 4 1.2.2 雙染料雙放光法 7 1.2.3 單染料雙放光法 10 1.2.4 利用溫度感測染料同時量測速度場 14 1.3 文獻回顧總結 16 1.4 研究目的 17 1.5 論文架構 17 第2章 實驗原理及方法 18 2.1 實驗原理 18 2.1.1 溫度感測螢光材料原理 18 2.1.1.1 傳統溫度螢光材料光致發光原理 18 2.1.1.2 量子點光致發光原理 20 2.1.1.3 熱淬滅滅原理 20 2.1.2 單染料雙放光法原理 22 2.1.3 微粒循跡測速儀原理 24 2.2 單染料溫度感測微粒的選用與性能 25 2.2.1 單染料溫度感測微粒的選用與製備 25 2.2.2 光譜儀溫度校正 31 2.2.3 必歐數計算 35 2.3 微流道製備 36 2.3.1 微流道裝置製程 36 2.3.2 微流道前置溫度校正 39 2.4 CFD模擬 43 2.5 溫度感測微粒溫度與速度反算實驗 48 2.5.1 微流道溫度實驗 49 2.5.2 溫度感測微粒溫度與速度反算 58 2.5.3 溫度感測微粒相關參數比較 63 第3章 實驗結果與討論 64 3.1 光譜儀溫度校正趨勢線結果 64 3.2 微流道前置溫度校正結果 67 3.3 CFD模擬結果 70 3.4 溫度感測微粒溫度與速度計算結果 73 3.4.1 微流道溫度實驗結果 73 3.4.2 溫度感測微粒溫度反算結果 74 3.4.3 溫度感測微粒相關參數比較結果 77 第4章 結論與建議 84 4.1 結論 84 4.2 建議 85 參考文獻 86

    [1] P. Saccomandi, E. Schena, and S. Silvestri, "Techniques for temperature monitoring
    during laser-induced thermotherapy: An overview," International Journal of
    Hyperthermia, vol. 29, no. 7, pp. 609-619, 2013, doi:
    10.3109/02656736.2013.832411.
    [2] D. B. R. Kenning, T. Kono, and M. Wienecke, "Investigation of boiling heat transfer
    by liquid crystal thermography," (in English), Exp. Therm. Fluid Sci., Article vol. 25,
    no. 5, pp. 219-229, Nov 2001, Art no. Pii s0894-1777(01)00070-x, doi:
    10.1016/s0894-1777(01)00070-x.
    [3] T. Liu, J. P. Sullivan, K. Asai, C. Klein, and Y. Egami, Pressure and temperature
    sensitive paints. Springer, 2005.
    [4] C. Abram, B. Fond, and F. Beyrau, "Temperature measurement techniques for gas
    and liquid flows using thermographic phosphor tracer particles," Progress in Energy
    and Combustion Science, vol. 64, pp. 93-156, Jan 2018, doi:
    10.1016/j.pecs.2017.09.001.
    [5] C. Y. Huang, C. A. Li, H. Y. Wang, and T. M. Liou, "The application of temperaturesensitive paints for surface and fluid temperature measurements in both thermal
    developing and fully developed regions of a microchannel," Journal of
    Micromechanics and Microengineering, vol. 23, no. 3, Mar 2013, Art no. 037001,
    doi: 10.1088/0960-1317/23/3/037001.
    [6] T. Cai, D. Peng, Y. Z. Liu, X. F. Zhao, and K. C. Kim, "A novel lifetime-based
    phosphor thermography using three-gate scheme and a low frame-rate camera," Exp.
    Therm. Fluid Sci., vol. 80, pp. 53-60, Jan 2017, doi:
    10.1016/j.expthermflusci.2016.08.017.
    [7] K. Ishii and K. Fumoto, "Temperature visualization and investigation inside
    evaporator of pulsating heat pipe using temperature-sensitive paint," Applied Thermal
    Engineering, vol. 155, pp. 575-583, Jun 2019, doi:
    10.1016/j.applthermaleng.2019.04.026.
    [8] S. Funatani, N. Fujisawa, and H. Ikeda, "Simultaneous measurement of temperature
    and velocity using two-colour LIF combined with PIV with a colour CCD camera and
    its application to the turbulent buoyant plume," Measurement Science and
    Technology, vol. 15, no. 5, p. 983, 2004.
    [9] L. Jacak, P. Hawrylak, and A. Wojs, Quantum dots. Springer Science & Business
    Media, 2013.
    [10] L. E. Brus, "Chemistry and physics of semiconductor nanocrystals," Columbia
    University, 2007.
    [11] 张庆彬, 曾庆辉, 郑金桔, 孔祥贵, 曲玉秋, and 宋凯, "CdSe/ZnSe/ZnS 多壳层结构
    量子点的制备与表征," 发光学报, vol. 30, no. 6, pp. 842-846, 2009.
    [12] Y. M. Zhao, C. Riemersma, F. Pietra, R. Koole, C. D. Donega, and A. Meijerink,
    "High-Temperature Luminescence Quenching of Colloidal Quantum Dots," Acs
    Nano, vol. 6, no. 10, pp. 9058-9067, Oct 2012, doi: 10.1021/nn303217q.
    [13] P. Zhou, X. S. Zhang, X. J. Liu, J. P. Xu, and L. Li, "Temperature-dependent
    photoluminescence properties of quaternary ZnAgInS quantum dots," Optics Express,
    vol. 24, no. 17, pp. 19506-19516, Aug 2016, doi: 10.1364/oe.24.019506.
    [14] Q. Li, Y. P. Zheng, X. M. Hou, T. Yang, T. X. Liang, and J. J. Zheng, "A wide range
    photoluminescence intensity-based temperature sensor developed with BN quantum
    dots and the photoluminescence mechanism," Sensors and Actuators B-Chemical, vol.
    304, Feb 2020, Art no. 127353, doi: 10.1016/j.snb.2019.127353.
    [15] I.-W. Cho and M.-Y. Ryu, "Effect of CdSe/ZnS quantum dots on temperaturedependent luminescence properties in mixed halide perovskites," Journal of
    Luminescence, vol. 219, p. 116940, 2020.
    [16] A. Bigdeli et al., "Ratiometric fluorescent nanoprobes for visual detection: Design
    principles and recent advances - A review," Analytica Chimica Acta, vol. 1079, pp.
    30-58, Nov 2019, doi: 10.1016/j.aca.2019.06.035.
    [17] S. Hanbin, N. D. M. Raimondi, C. Emmanuel, M. Cabassud, and C. Gourdon,
    "Temperature field acquisition by planar laser induced fluorescence using the twocolor/two-dye technique for liquid flows in a millimetric zigzag channel," Chemical
    Engineering Journal, vol. 426, p. 131460, 2021.
    [18] G. E. Khalil et al., "Dual-luminophor pressure-sensitive paint I. Ratio of reference to
    sensor giving a small temperature dependency," Sensors and Actuators B-Chemical,
    vol. 97, no. 1, pp. 13-21, Jan 2004, doi: 10.1016/s0925-4005(03)00484-2.
    [19] V. K. Natrajan and K. T. Christensen, "Two-color laser-induced fluorescent
    thermometry for microfluidic systems," Measurement Science and Technology, vol.
    20, no. 1, Jan 2009, Art no. 015401, doi: 10.1088/0957-0233/20/1/015401.
    [20] P. Chamarthy, S. V. Garimella, and S. T. Wereley, "Measurement of the temperature
    non-uniformity in a microchannel heat sink using microscale laser-induced
    fluorescence," Int. J. Heat Mass Transf., vol. 53, no. 15-16, pp. 3275-3283, 2010.
    [21] P. Maisto et al., "Characterization of fluorescent polystyrene microspheres for
    advanced flow diagnostics," in 43rd AIAA Fluid Dynamics Conference, 2013, p.
    3168.
    [22] J. Massing, D. Kaden, C. J. Kahler, and C. Cierpka, "Luminescent two-color tracer
    particles for simultaneous velocity and temperature measurements in microfluidics,"
    Measurement Science and Technology, vol. 27, no. 11, Nov 2016, Art no. 115301,
    doi: 10.1088/0957-0233/27/11/115301.
    [23] 林頌揚, "雙波長自校式溫度感測循跡微粒之研發," 碩士, 機械工程系, 國立臺灣
    科技大學, 台北市, 2019.
    [24] 繆聞, "雙波長自校式溫度感測循跡微粒之性能驗證及資料處理," 碩士, 機械工程
    系, 國立臺灣科技大學, 台北市, 2020.
    [25] 吳尚諭, "溫度感測循跡微粒應用於微尺度流動之溫度場資料後處理," 碩士, 機械
    工程系, 國立臺灣科技大學, 台北市, 2021.
    [26] L. Perrin, G. Castanet, and F. Lemoine, "Characterization of the evaporation of
    interacting droplets using combined optical techniques," Exp. Fluids, vol. 56, no. 2,
    Feb 2015, Art no. 29, doi: 10.1007/s00348-015-1900-3.
    [27] P. Dunand, G. Castanet, and F. Lemoine, "A two-color planar LIF technique to map
    the temperature of droplets impinging onto a heated wall," Exp. Fluids, vol. 52, no. 4,
    pp. 843-856, Apr 2012, doi: 10.1007/s00348-011-1131-1.
    [28] M. M. Prenting, M. I. Bin Dzulfida, T. Dreier, and C. Schulz, "Characterization of
    tracers for two-color laser-induced fluorescence liquid-phase temperature imaging in
    sprays," Exp. Fluids, vol. 61, no. 3, pp. 1-15, 2020.
    [29] S. Seitz and L. M. Wright, "Thermal Characterization of a Turbulent Free Jet With
    Planar Laser-Induced Fluorescence," Journal of Thermal Science and Engineering
    Applications, vol. 12, no. 5, Oct 2020, Art no. 051023, doi: 10.1115/1.4046905.
    [30] J. Vogt and P. Stephan, "Using microencapsulated fluorescent dyes for simultaneous
    measurement of temperature and velocity fields," Measurement Science and
    Technology, vol. 23, no. 10, Oct 2012, Art no. 105306, doi: 10.1088/0957-
    0233/23/10/105306.
    [31] F. Cellini, S. D. Peterson, and M. Porfiri, "Flow velocity and temperature sensing
    using thermosensitive fluorescent polymer seed particles in water," International
    Journal of Smart and Nano Materials, vol. 8, no. 4, pp. 232-252, 2017, doi:
    10.1080/19475411.2017.1409822.
    [32] 陳建志, "塗覆量子點之溫度感測流場循跡微粒之研發," 碩士, 機械工程系, 國立
    臺灣科技大學, 台北市, 2018.
    [33] Y. C. Lei et al., "A vision-based hybrid particle tracking velocimetry (PTV) technique
    using a modified cascade correlation peak-finding method," Exp. Fluids, vol. 53, no.
    5, pp. 1251-1268, Nov 2012, doi: 10.1007/s00348-012-1357-6.
    [34] A. Alias, Y. Yaacob, Z. Zabidi, S. Alshurdin, N. J. J. o. F. Aini, and A. Sciences,
    "General description of configurational coordinate model and kinetic of
    luminescence," vol. 9, no. 5S, pp. 568-578, 2017.
    [35] S. Poncé, Y. Jia, M. Giantomassi, M. Mikami, and X. J. T. J. o. P. C. C. Gonze,
    "Understanding thermal quenching of photoluminescence in oxynitride phosphors
    from first principles," vol. 120, no. 7, pp. 4040-4047, 2016.
    [36] T. Liu and J. Sullivan'Pressure, "Temperature Sensitive Paints' Springer Verlag," ed:
    Berlin Springer, 2004.
    [37] 张庆彬, 曾庆辉, 郑金桔, 孔祥贵, 曲玉秋, and 宋. J. 發光學報, "CdSe/ZnSe/ZnS 多
    壳层结构量子点的制备与表征," vol. 30, no. 6, pp. 842-846, 2009.
    [38] P. Zhou, X. Zhang, X. Liu, J. Xu, and L. J. O. e. Li, "Temperature-dependent
    photoluminescence properties of quaternary ZnAgInS quantum dots," vol. 24, no. 17,
    pp. 19506-19516, 2016.
    [39] P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouche, "Evaporating and
    combusting droplet temperature measurements using two-color laser-induced
    fluorescence," Experiments in Fluids, vol. 31, no. 1, pp. 45-55, Jul 2001, doi:
    10.1007/s003480000257.
    [40] B. Sokoray-Varga and J. Jozsa, "Particle tracking velocimetry (PTV) and its
    application to analyse free surface flows in laboratory scale models," Periodica
    Polytechnica-Civil Engineering, vol. 52, no. 2, pp. 63-71, 2008, doi:
    10.3311/pp.ci.2008-2.02.
    [41] F. Kreith and M. Bohn, "Principles of heat transfer, St," Paul: West Publishing
    Company, 1993.
    [42] M. Siahmargoi, N. Rahbar, H. Kargarsharifabad, S. E. Sadati, and A. Asadi, "An
    Experimental Study on the Performance Evaluation and Thermodynamic Modeling of
    a Thermoelectric Cooler Combined with Two Heatsinks," Scientific Reports, vol. 9,
    Dec 2019, Art no. 20336, doi: 10.1038/s41598-019-56672-9.

    QR CODE