簡易檢索 / 詳目顯示

研究生: 吳尚諭
Shang-Yu Wu
論文名稱: 溫度感測循跡微粒應用於微尺度流動之溫度場資料後處理
Post-Processing of Temperature Field in Microscopic Flows using Temperature Sensitive Tracer Particles
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 溫琮毅
Tsrong-Yi Wen
陳炤彰
Chao-Chang Chen
黃智永
Chih-Yung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 166
中文關鍵詞: 量子點溫度感測循跡微粒
外文關鍵詞: Quantum Dots, Temperature sensitive tracer particles
相關次數: 點閱:269下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溫度感測循跡微粒應用於溫度場與速度場可視化時,較高的螢光強度能增加訊號雜訊比以提升量測準確性,而量子點作為新興的溫度感測螢光材料,相較於傳統有機的溫度感測材料具有較高的螢光強度,因此本研究探討溫度感測螢光材料與循跡微粒製成溫度感測循跡微粒應用於微尺度熱流場時適用之溫度感測材料選擇,以及溫度反算之不同資料後處理方式以及其效果。以揮發塗覆方式合成兩種雙波長溫度感測微粒配對,分別是EuTTA / Rhodamine 110,以及量子點CsPbBr3 / CdZnSeS/ZnS。研究中以影像分析比較了塗覆於聚醯胺微粒表面之塗覆成功率以及放光特性。塗覆的結果顯示,微粒上同時有EuTTA及Rhodamine 110波長訊號占比93%;量子點微粒上同時有CsPbBr3及CdZnSeS/ZnS波長訊號占比91%,此外配合光譜儀的結果得知兩種溫度感測微粒仍具溫度敏感性,判斷兩者皆成功。在放光特性上量子點的合成微粒具有較高的放光強度,可以提升訊號雜訊比降低量測誤差,因此將其運用於微尺度溫度場可視化實驗。研究中進一步利用數值模擬輔助設計出測試用流道,並根據加熱條件找出用於現場溫度校正的均勻溫度分布,以及用於溫度場可視化的溫度梯度場,將溫度梯度的模擬結果與溫度場可視化之結果比較。測試用流道尺寸為14×4×0.2??3,溫度梯度的模擬結果顯示在流道中的溫度變化約為2.43℃/mm。溫度場可視化實驗三種不同的微粒濃度,並測試不同之溫度影像資料後處理模式。第一種模式將前處理後的微粒影像分成窗格,並將窗格內的平均光強度或光強度比值用於計算溫度校正及溫度場可視化;第二種模式針對前處理後的光強度比微粒影像,透過影像處理抓出影像中的微粒後,於溫度校正計算及溫度場可視化。溫度場可視化結果顯示,第一種以窗格平均的影像資料處理模式,使用高微粒濃度,以10×10平均窗格,配合三次多項式擬合的溫度校正曲線,以單一量子點CsPbBr3訊號可得到最準確之溫度校正結果;第二種針對微粒的影像處理方式,因合成微粒之間量子點濃度塗覆不均,計算出的溫度梯度結果誤差較大。最後採用循跡方式觀察單獨合成微粒在溫度梯度場中光強度的變化,發現其變化趨勢明顯且與模擬結果高度相關,證明針對個別微粒循跡處理在溫度後處理較為適宜。


    The application of temperature sensitive tracer particles in temperature and velocity field visualization. The higher fluorescent intensity can increase signal to noise ratio and then enhance measurement accuracy. Quantum dot is a novel temperature sensitive fluorescent material which has stronger light intensity compare to traditional organic one. Thus, in this study, temperature sensitive particles made by luminescent temperature sensitive material and tracer particles was applied to visualize microscopic thermal and fluid flows and different post-processing methods to evaluate temperature were compared. EuTTA / Rhodamine 110 dye and CsPbBr3 / CdZnSeS/ZnS quantum dots were coated onto polyamide seeding particles by evaporative coating method to form dual wavelength temperature-sensitive tracer particles. Image analysis results of the coated particles show that the emission signals of both EuTTA and Rhodamine 110 can be detected on 93% of the coated particles simultaneously. For the quantum dots pair, CsPbBr3 and CdZnSeS/ZnS, 91% of the synthesized dye particle can be detected to have both emission signals simultaneously. In addition, spectrometer test shows that whether both dyes or both quantum dots have fluorescent and temperature sensitivity after synthesis process. Further comparisons on emission intensity show that the combination of CsPbBr3 and CdZnSeS/ZnS gives better signal to noise ratio and reduces measurement error, and therefore adopted for the post-processing of temperature visualization tests. CFD Simulation was performed to help designing a microscopic flow channel for temperature calibration and visualization experiments. The dimension of test flow channel is 14×4×0.2??3, which provides uniform temperature distribution and a temperature gradient of 2.43℃/mm. Three levels of particle seeding density were tested with several different post-processing schemes. The first shcme devides particle images into several windows and the light intensity or intensity ratio in each window will be averaged for obtaining temperature calibration curve and final temperature measurements. For the second scheme, intensity or intensity ratio on individual particle image is measured by preprocesing particle image and then every intensity ratio on particle will be counted to calculate temperature calibration curve and visualization. The visualization results show that for the first post-processing scheme, CsPbBr3 signal with high density seeding particle, 10×10 window size and cubic polynomial fitted temperature calibration curve provide the most accurate temperature calibration results. For the second scheme, the results show high deviation and are not consistent to simulation, which can be due to the inhomogeneous coating of quantum dots onto individual particles. Finally, a single particle tracking scheme shows highly correlated results between the intensity variation and temperature change and aggree reasonably to the simulation results. This result shows that tracking-based post-processing scheme for individual temperature-sensitive particles is more appropriate for obtaining temperature data.

    第1章 緒論 ......................................................................................................................... 1 1.1 研究動機.................................................................................................................... 1 1.2 文獻回顧.................................................................................................................... 1 1.2.1 溫度量測技術發展............................................................................................ 1 1.2.2 雙種溫度感測螢光材料.................................................................................... 7 1.2.3 溫度與速度場同時量測.................................................................................... 9 1.3 文獻回顧總結.......................................................................................................... 15 1.4 研究目的.................................................................................................................. 16 1.5 論文架構.................................................................................................................. 16 第2章 實驗原理及方法 ................................................................................................... 17 2.1 溫度感測螢光材料.................................................................................................. 17 2.2 雙波長溫度感測微粒的選用與製備...................................................................... 25 2.3 雙波長溫度感測微粒性能驗證及比較.................................................................. 33 2.3.1 掃描式電子顯微鏡觀測塗覆微粒的表面...................................................... 34 2.3.2 檢測塗覆微粒上具有兩種波長訊號之比例.................................................. 34 2.3.3 光譜儀測試塗覆微粒之溫度敏感性.............................................................. 36 2.4 熱流場可視化實驗.................................................................................................. 42 2.4.1 流道製作.......................................................................................................... 42 2.4.2 工作流體與溫度感測循跡微粒...................................................................... 46 2.4.3 微粒影像大小的計算及驗證.......................................................................... 47 2.4.4 CFD模擬 ............................................................................................................. 58 2.4.5 現場溫度校正.................................................................................................. 70 2.4.6 流場可視化...................................................................................................... 77 2.4.7 影像處理.......................................................................................................... 78 第3章 結果與討論 ........................................................................................................... 85 3.1 雙波長溫度敏感螢光材料配對對溫度感測微粒性能之影響.............................. 85 3.1.1 EuTTA及Rh110配對之塗覆結果 .................................................................... 85 3.1.2 雙波長溫度敏感材料配對之塗覆結果之微粒影像驗證.............................. 92 3.1.3 雙波長溫度敏感材料配對之溫度敏感性之比較.......................................... 95 3.1.4 雙波長溫度敏感螢光材料配對小結與討論................................................ 102 3.2 微尺度熱流場可視化實驗測試............................................................................ 103 3.2.1 CFD模擬結果 ................................................................................................... 103 3.2.2 溫度可視化資料後處理方式之比較............................................................ 108 3.2.3 微尺度熱流場可視化小結與討論................................................................ 158 第4章 結論與未來工作 ................................................................................................. 160 4.1 結論........................................................................................................................ 160 4.2 建議及未來工作.................................................................................................... 161

    [1] H. Maas, A. Gruen, and D. J. E. i. f. Papantoniou, "Particle tracking velocimetry in three-dimensional flows," vol. 15, no. 2, pp. 133-146, 1993.
    [2] D. J. T. A. J. Estruch-Samper, "Particle Image Velocimetry, RJ Adrian and J. Westerweel, Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge, CB2 2RU, UK. 2011. 558pp.£ 75. ISBN 978-0-521-44008-0," vol. 116, no. 1176, pp. 219-220, 2012.
    [3] P. Saccomandi, E. Schena, and S. J. I. J. o. H. Silvestri, "Techniques for temperature monitoring during laser-induced thermotherapy: an overview," vol. 29, no. 7, pp. 609-619, 2013.
    [4] D. Kenning, T. Kono, M. J. E. T. Wienecke, and F. Science, "Investigation of boiling heat transfer by liquid crystal thermography," vol. 25, no. 5, pp. 219-229, 2001.
    [5] T. J. E. o. A. E. Liu, "Pressure‐and Temperature‐Sensitive Paints," 2010.
    [6] C. Abram, B. Fond, F. J. P. i. e. Beyrau, and c. science, "Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles," vol. 64, pp. 93-156, 2018.
    [7] C.-Y. Huang, C.-A. Li, H.-Y. Wang, T.-M. J. J. o. M. Liou, and Microengineering, "The application of temperature-sensitive paints for surface and fluid temperature measurements in both thermal developing and fully developed regions of a microchannel," vol. 23, no. 3, p. 037001, 2013.
    [8] T. Cai, D. Peng, Y. Z. Liu, X. F. Zhao, K. C. J. E. T. Kim, and F. Science, "A novel lifetime-based phosphor thermography using three-gate scheme and a low frame-rate camera," vol. 80, pp. 53-60, 2017.
    [9] K. Ishii and K. J. A. T. E. Fumoto, "Temperature visualization and investigation inside evaporator of pulsating heat pipe using temperature-sensitive paint," vol. 155, pp. 575-583, 2019.
    [10] S. Park, A. Parahovnik, Y. Peles, and S. S. J. O. L. Vasu, "Laser-induced fluorescence thermometry of supercritical CO 2 flows inside a micro-channel," vol. 46, no. 8, pp. 1924-1927, 2021.
    [11] L. Jacak, P. Hawrylak, and A. Wojs, Quantum dots. Springer Science & Business Media, 2013.
    [12] L. E. J. C. U. Brus, "Chemistry and physics of semiconductor nanocrystals," 2007.
    [13] 张庆彬, 曾庆辉, 郑金桔, 孔祥贵, 曲玉秋, and 宋. J. 發光學報, "CdSe/ZnSe/ZnS 多壳层结构量子点的制备与表征," vol. 30, no. 6, pp. 842-846, 2009.
    [14] J. Lan et al., "A visual physiological temperature sensor developed with gelatin-stabilized luminescent silver nanoclusters," vol. 143, pp. 469-473, 2015.
    [15] P. Zhou, X. Zhang, X. Liu, J. Xu, and L. J. O. e. Li, "Temperature-dependent photoluminescence properties of quaternary ZnAgInS quantum dots," vol. 24, no. 17, pp. 19506-19516, 2016.
    [16] I.-W. Cho and M.-Y. J. J. o. L. Ryu, "Effect of CdSe/ZnS quantum dots on temperature-dependent luminescence properties in mixed halide perovskites," vol. 219, p. 116940, 2020.
    [17] Q. Li et al., "A wide range photoluminescence intensity-based temperature sensor developed with BN quantum dots and the photoluminescence mechanism," vol. 304, p. 127353, 2020.
    [18] A. Bigdeli et al., "Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances-A review," vol. 1079, pp. 30-58, 2019.
    [19] G. E. Khalil, J. W. Crafton, S. D. Fonov, M. Sellers, D. J. H. o. M. i. S. Dabiri, and Engineering, "Luminescent method for pressure measurement," pp. 567-614, 2012.
    [20] G. E. Khalil et al., "Dual-luminophor pressure-sensitive paint: I. Ratio of reference to sensor giving a small temperature dependency," vol. 97, no. 1, pp. 13-21, 2004.
    [21] J. Sakakibara and R. J. J. E. i. F. Adrian, "Whole field measurement of temperature in water using two-color laser induced fluorescence," vol. 26, no. 1, pp. 7-15, 1999.
    [22] V. Natrajan, K. J. M. S. Christensen, and Technology, "Two-color laser-induced fluorescent thermometry for microfluidic systems," vol. 20, no. 1, p. 015401, 2008.
    [23] G. A. Robinson, R. P. Lucht, and N. M. J. A. o. Laurendeau, "Two-color planar laser-induced fluorescence thermometry in aqueous solutions," vol. 47, no. 15, pp. 2852-2858, 2008.
    [24] M. Kim and M. J. E. i. f. Yoda, "Dual-tracer fluorescence thermometry measurements in a heated channel," vol. 49, no. 1, pp. 257-266, 2010.
    [25] J. Vogt, "Development of novel Particle Image Thermometry methods for highly resolved measurements of temperature and velocity fields in fluids," 2014.
    [26] S. Funatani, N. Fujisawa, H. J. M. S. Ikeda, and Technology, "Simultaneous measurement of temperature and velocity using two-colour LIF combined with PIV
    with a colour CCD camera and its application to the turbulent buoyant plume," vol. 15, no. 5, p. 983, 2004.
    [27] S. Someya, S. Yoshida, Y. Li, K. J. M. S. Okamoto, and Technology, "Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles," vol. 20, no. 2, p. 025403, 2009.
    [28] J. Vogt, P. J. M. S. Stephan, and Technology, "Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields," vol. 23, no. 10, p. 105306, 2012.
    [29] F. Cellini, S. D. Peterson, M. J. I. J. o. S. Porfiri, and N. Materials, "Flow velocity and temperature sensing using thermosensitive fluorescent polymer seed particles in water," vol. 8, no. 4, pp. 232-252, 2017.
    [30] J. Massing, D. Kaden, C. Kähler, C. J. M. S. Cierpka, and Technology, "Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics," vol. 27, no. 11, p. 115301, 2016.
    [31] 陳建志, "塗覆量子點之溫度感測流場循跡微粒之研發," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018.
    [32] 林頌揚, "雙波長自校式溫度感測循跡微粒之研發," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2019.
    [33] 繆聞, "雙波長自校式溫度感測循跡微粒之性能驗證及資料處理," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020.
    [34] A. Alias, Y. Yaacob, Z. Zabidi, S. Alshurdin, N. J. J. o. F. Aini, and A. Sciences, "General description of configurational coordinate model and kinetic of luminescence," vol. 9, no. 5S, pp. 568-578, 2017.
    [35] S. Poncé, Y. Jia, M. Giantomassi, M. Mikami, and X. J. T. J. o. P. C. C. Gonze, "Understanding thermal quenching of photoluminescence in oxynitride phosphors from first principles," vol. 120, no. 7, pp. 4040-4047, 2016.
    [36] T. Liu and J. Sullivan'Pressure, "Temperature Sensitive Paints' Springer Verlag," ed: Berlin Springer, 2004.
    [37] A. M. Smith and S. J. A. o. c. r. Nie, "Semiconductor nanocrystals: structure, properties, and band gap engineering," vol. 43, no. 2, pp. 190-200, 2010.
    [38] M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. J. A. c. Resch-Genger, "Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties," vol. 81, no. 15, pp. 6285-6294, 2009.
    [39] A. M. J. P. Brouwer and A. Chemistry, "Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report)," vol. 83, no. 12, pp. 2213-2228, 2011.
    [40] 林孟樺, "由單一不對稱三角形結構誘發之聲射流流場分析," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2019.
    [41] C. Tropea, A. L. Yarin, and J. F. Foss, Springer handbook of experimental fluid mechanics. Springer, 2007.
    [42] S. Scharnowski, C. J. J. O. Kähler, and L. i. Engineering, "Particle image velocimetry-Classical operating rules from today’s perspective," p. 106185, 2020.
    [43] M. Siahmargoi, N. Rahbar, H. Kargarsharifabad, S. E. Sadati, and A. J. S. r. Asadi, "An experimental Study on the performance evaluation and thermodynamic Modeling of a thermoelectric cooler combined with two Heatsinks," vol. 9, no. 1, pp. 1-11, 2019.

    QR CODE