簡易檢索 / 詳目顯示

研究生: 陳暉豪
Hui-Hao Chen
論文名稱: 表面起始原子轉移自由基聚合接枝圖案化聚甲基丙烯酸N,N-二甲氨基乙酯-量子點複合高分子刷及酸鹼響應
Grafting the Pattened Poly(2-dimethylaminoethyl methacrylate)-Quantum Dots Composite Brushes via Surface-Initiated Atom Transfer Radical Polymerization with pH Responsive Property
指導教授: 陳建光
Jem-Kun Chen
口試委員: 邱顯堂
Shen-Tarng Chiou
張棋榕
Chi-Jung Chang
黃啟賢
Chi-Hsien Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 129
中文關鍵詞: 智慧型高分子原子轉移自由基聚合法微影製程量子點
外文關鍵詞: Smart polymers, Atom transfer radical polymerization, Lithography, Quantum dots
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分為兩個部分,第一部份利用原子轉移自由基聚合(Atom Transfer Radical Polymerization, ATRP)於圖案化矽晶圓製備表面起始聚甲基丙烯酸N,N-二甲氨基乙酯(Poly(2-(dimethylamino)ethyl methacrylate), PDMAEMA)的高分子刷,反應完以傅立葉轉換紅外線光譜儀(FT-IR)、X射線光電子能譜儀(XPS)、高解析場發射掃描式顯微鏡(FE-SEM)、接觸角(CA)分析表面組成。
    結果顯示可在線/間距比率為1:1.5的圖案化光阻矽晶圓表面長出現寬為1、1.5、2、3μm的一維光柵,利用原子力顯微鏡(AFM)探討聚合時間與高度的關係,由於高分子刷一端固定於表面,另一端可隨著環境的改變而呈現不同樣貌,在空氣中測得最高高度為457 nm,在pH=4水中高度因正電排斥關係變為1323nm,而在pH=7水中高度因膨潤(swelling)關係變為831nm,最後pH=10水中高度因捲曲(collapsing)關係變為783nm,可推得高分子刷會受到不同酸鹼度環境下影響,高度會有2~3倍的變化,未來可應用於環境檢測器。
    第二部分為合成量子點鎘化碲(Quantum Dots,CdTe),利用正負電作用力吸附方式固定量子點鎘化碲於高分子刷上,形成具有螢光圖案的高分子刷。由場發射穿透式電子顯微鏡(FE-TEM)、光激發螢光光譜儀(PL)、紫外光/可見光光譜儀(UV-Vis)、X光繞射分析儀(XRD)分析CdTe,再由雷射掃描式共軛焦顯微鏡(CLSM)進行觀察,可得到接上量子點的高分子刷之螢光圖案,利用AFM觀察不同pH值間含量子點之高分子刷的伸縮。


    In this study, we divide into two parts, First, we grafted Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes from the initiator-modified surface of patterened silicon wafer by Atom Transfer Radical Polymerization (ATRP). After the reactions finish, we can use Fourier Transform Infrared Spectroscope (FTIR), X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscope (FE-SEM) and Contact Angle System (CA) to analyze the surface of polymer brushes.
    One-dimensional grating of the polymer brushes on the silicon wafer with the different widths are 1, 1.5, 2, 3μm. Using Atomic Force Microscope (AFM) to investigate the relationship between polymerization time and thickness. The highest thickness is 457nm. Polymer brushes are stimuli-responsive, they will swell and collapse when environment changes. When pH value is 4, 7 and 10, the highest thickness is 1323nm, 831nm and 783 nm, because of the positive repulsive force. There are almost double or triple changes of thickness, so we can use the characteristics in grating sensor.
    Furthermore, we immobilize quantum dots (CdTe) on the PDMAEMA brushes, and then use UV-vis light to make fluorescent pattern. After we finish the reaction, we use Field-emission transmission electron microscope (FE-TEM), Spectrofluorometer (PL), Ultraviolet-visible spectroscope (UV-Vis) and X-ray Diffractometer (XRD) to analyze quantum dots. Then using Confocal Laser Scanning Microscopy (CLSM) captures the different widths of fluorescent patterns, and find that CdTe was bound to the patterned PDMAEMA brushes.Observing switch of polymer brushes between different pH value by Atomic Force Microscope (AFM).

    指導教授推薦書 審定書 摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XII 表目錄 XVIII 1. 緒論 1 1.1. 研究背景 1 1.2. 研究目的 2 2. 理論與文獻回顧 3 2.1. 高分子刷簡介 3 2.2. 自組裝單分子層 6 2.3. 原子轉移自由基聚合法 8 2.4. 液態除氣法 11 2.5. 智能型高分子 13 2.6. 微影製程[26] 16 2.7. 晶圓蝕刻 23 2.8. 光柵效應 26 2.9. 量子點 28 3. 儀器簡介 32 3.1. 原子力顯微鏡 (AFM) 32 3.2. 掃描式電子顯微鏡 (SEM) 36 3.3. X射線光電能譜儀 (XPS) 38 3.4. 雷射掃描共軛焦顯微鏡(CLSM) 40 3.5. 傅立葉轉換紅外線光譜儀 (FT-IR) 42 3.6. 場發射穿透式電子顯微鏡 (FE-TEM) 46 3.7. 表面電位分析儀 (Zeta-potential) 49 3.8. 紫外光/可見光光譜儀 (UV-Vis) 50 3.9. 接觸角 (CA) 52 3.10. X光繞射分析儀 (XRD) 54 4. 實驗流程與方法 57 4.1. 實驗流程圖 57 4.2. 實驗藥品 58 4.3. 實驗儀器 60 4.4. 實驗步驟 62 4.4.1. 矽晶片表面起始聚合PDMAEMA高分子刷 62 4.4.2. 微影製程製備圖案化光阻層 64 4.4.3. 蝕刻製程製備圖案化矽晶圓 67 4.4.4. 圖案化矽晶片表面起始聚合高分子刷 67 4.4.5. 線型孔洞型矽晶圓表面起始聚合高分子刷 70 4.4.6. CdTe量子點之製備 73 5. 結果與討論 74 5.1. 矽晶圓表面高分子刷分析 74 5.1.1. FTIR光譜 74 5.1.2. ESCA化學能譜分析 76 5.1.3. 接觸角親疏水測定 83 5.2. 高分子刷表面形貌分析 84 5.3. 圖案化高分子刷表面分析 86 5.3.1. 微影製程光阻圖案 86 5.3.2. 圖案化APTES自組裝層 89 5.3.3. 圖案化ATRP起始劑層 89 5.3.4. 圖案化PDMAEMA高分子刷 90 5.3.5. 圖案化PDMAEMA高分子刷用於雷射分析 97 5.4. 高分子聚合於蝕刻表面分析 101 5.4.1. 矽晶圓表面分析 101 5.4.2. 高分子聚合於矽晶圓之形貌分析 104 5.5. 高分子酸鹼性測試分析 107 5.6. 奈米鎘化碲(CdTe)合成與分析 112 5.6.1. Zeta potential表面電位分析 112 5.6.2. SEM、TEM表面形態分析 114 5.6.3. XRD結晶分析 115 5.6.4. UV-Vis、PL光譜分析 116 5.7. 螢光圖案高分子刷檢測與分析 117 5.7.1. CLSM螢光圖案分析 117 5.7.2. SEM、AFM表面形態分析 120 6. 結論 122 參考文獻 123

    [1] N. Bunjes, S. Paul, J. Habicht, O. Prucker, J. Rühe, and W. Knoll, "On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures," Colloid and Polymer Science, vol. 282, pp. 939-945, 2004.
    [2] P. de Gennes, "Conformations of polymers attached to an interface," Macromolecules, vol. 13, pp. 1069-1075, 1980.
    [3] B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Progress in Polymer Science, vol. 25, pp. 677-710, 2000.
    [4] S. Milner, "Polymer brushes," Science, vol. 251, pp. 905-914, 1991.
    [5] Y. T. M. Ejaz, T. Fukuda, "Controlled grafting of a well-defined polymer on porous glass filter by surface-initiated atom transfer radical polymerization," polymer, vol. 42, pp. 6811-6815, 2001.
    [6] M. B. a. J. R. he, "Preparation and Characterization of a Polyelectrolyte Monolayer Covalently Attached to a Planar Solid Surface," Macromolecules, vol. 32, pp. 2309-2316, 1999.
    [7] W. J. B. B. Zhao, "Polymer brushes surface-immobilized macromolecules," Prog. Polym. Sci, vol. 25, pp. 677-710, 2000.
    [8] A. Kopf, J. Baschnagel, J. Wittmer, and K. Binder, "On the adsorption process in polymer brushes: a Monte Carlo study," Macromolecules, vol. 29, pp. 1433-1441, 1996.
    [9] R. Zajac and A. Chakrabarti, "Irreversible polymer adsorption from semidilute and moderately dense solutions," Physical Review E, vol. 52, p. 6536, 1995.
    [10] W.C. Bigelow, D.L. Pickett, W.A. Zisman, "Film adsorbed from solotion in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
    [11] R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983.
    [12] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, pp. 7152-7167, 1991.
    [13] D. G. a. S. M. Husson, "Room Temperature Growth of Surface-Confined Poly(acrylamide) from Self-Assembled Monolayers Using Atom Transfer Radical Polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [14] D. Gopireddy and S. M. Husson, "Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [15] B. M. E. Delamarche, H. Kang, and Ch. Gerber, "Thermal Stability of Self-Assembled Monolayers," Langmuir, vol. 10, pp. 4103-4108, 1994.
    [16] J. A. H. a. J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
    [17] S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," The Journal of Physical Chemistry B, vol. 103, pp. 4212-4217, 1999.
    [18] J.-K. Chen, J.-H. Wang, C.-C. Cheng, J.-Y. Chang, and F.-C. Chang, "Polarity-indicative two-dimensional periodic relief gratings of tethered poly (methyl methacrylate) on silicon surfaces for visualization in volatile organic compound sensing," Applied Physics Letters, vol. 102, p. 151906, 2013.
    [19] G. Masci, L. Giacomelli, and V. Crescenzi, "Atom Transfer Radical Polymerization ofN-Isopropylacrylamide," Macromolecular Rapid Communications, vol. 25, pp. 559-564, 2004.
    [20] K. M. a. J. Xia, "Atom Transfer Radical Polymerization," Chem. Rev., vol. 101, pp. 2921-2990, 2001.
    [21] T. Bhuvana, B. Kim, X. Yang, H. Shin, and E. Kim, "Reversible Full Color Generation with Patterned Yellow Electrochromic Polymers," Angewandte Chemie International Edition, vol. 52, pp. 1180-1184, 2013.
    [22] Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano letters, vol. 5, pp. 5-9, 2005.
    [23] Y.-H. Ho, K.-H. Ting, K.-Y. Chen, S.-W. Liu, W.-C. Tian, and P.-K. Wei, "Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel," Optics express, vol. 21, pp. 29827-29835, 2013.
    [24] E. Costa, M. Coelho, L. M. Ilharco, A. Aguiar-Ricardo, and P. T. Hammond, "Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior," Macromolecules, vol. 44, pp. 612-621, 2011/02/08 2011.
    [25] Qiaolan Zhang, Fan Xia, Taolei Sun, Wenlong Song, Tianyi Zhao, Mancang Liua, and Lei Jiang, "Wettability switching between high hydrophilicity at low pH and high hydrophobicity at high pH on surface based on pH-responsive polymer," Chem. Commun. vol. 16, pp. 1199–1201, January 16 2008.
    [26] H. Xiao, "半導體製程技術導論,羅正忠和張鼎張譯," ed:二版,臺灣培生教育出版,臺北市,民國九十三年, 2007.
    [27] P. M. Morse, P. M. Morse, and P. M. Morse, Vibration and sound vol. 2: McGraw-Hill New York, 1948.
    [28] Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, et al., "Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties," The Journal of Physical Chemistry B, vol. 107, pp. 7406-7413, 2003.
    [29] Y. S. F. J. Xu, Z. P. Cheng, X. L. Zhu, and E. T. K. C. X. Zhu, and K. G. Neoh, "Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations," Macromolecules, vol. 38, pp. 6524-6528, 2005.
    [30] F. Zhou, L. Jiang, W. Liu, and Q. Xue, "Fabrication of Chemically Tethered Binary Polymer-Brush Pattern through Two-Step Surface-Initiated Atomic-Transfer Radical Polymerization," Macromolecular Rapid Communications, vol. 25, pp. 1979-1983, 2004.
    [31] Rong Dong, Sitaraman Krishnan, Barbara A. Baird, Manfred Lindau, and Christopher K. Ober, "Patterned Biofunctional Poly(acrylic acid) Brushes on Silicon Surfaces," Biomaterials, vol. 8, pp. 3082-3092, 2007.
    [32] M. Zhu, G. Baffou, N. Meyerbröker, and J. Polleux, "Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion," ACS nano, vol. 6, pp. 7227-7233, 2012.
    [33] Takagahara, T.; Takeda, K. , "Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. , " Physical Review B, 46, (23), 15578-15581, 1992.
    [34] Murray, C. B.; Norris, D. J.; Bawendi, M. G. , "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. , " Journal of the American Chemical Society, 115, (19), 8706-8715, 1993.
    [35] Mews, A.; Eychmueller, A.; Giersig, M.; Schooss, D.; Weller, H. , "Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide., "The Journal of Physical Chemistry, 98, (3), 934-941, 1994.
    [36] Hines, M. A.; Guyot-Sionnest, P. , "Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals., " The Journal of Physical Chemistry , 100, (2), 468-471, 1996.
    [37] Peng, Z. A.; Peng, X. , "Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor, " Journal of the American Chemical Society, 123, (1), 183-184, 2001.
    [38]Khatei, J.; Koteswara Rao, K. S. R. , "Hydrothermal synthesis of CdTe QDs: Their luminescence quenching in the presence of bio-molecules and observation of bistable memory effect in CdTe QD/PEDOT:PSS heterostructure. , " Materials Chemistry and Physics , 130, (1-2), 159-164, 2011.
    [39] J. LIOU , "Refining the grip on nature’s fine grains, Drilling contractor, " 68, 2012.
    [40] R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, et al., "Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces," The Journal of Physical Chemistry C, vol. 116, pp. 6289-6297, 2012.
    [41] Debashish Roy, James T. Guthrie and Se´bastien Perrier, "Synthesis of natural–synthetic hybrid materials from cellulose via the RAFT process, " Soft Matter, 4, 145-155, 2008.
    [42] Silva FO, Carvalho MS, Mendonça R, Macedo WA, Balzuweit K, Reiss P, Schiavon MA. , "Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. , " Nanoscale Res Lett,7(1) 536,2012 Sep 27.
    [43] R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, et al., "Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces," The Journal of Physical Chemistry C, vol. 116, pp. 6289-6297, 2012.
    [44] W. H. Yu, E. T. Kang, and K. G. Neoh, "Controlled Grafting of Well-Defined Polymers on Hydrogen-Terminated Silicon Substrates by Surface-Initiated Atom Transfer Radical Polymerization," J. Phys. Chem. B , 107 (37), pp 10198–10205, 2003.
    [45] Qian Yang, Jing Tian, Meng-Xin Hu, and Zhi-Kang Xu, "Construction of a Comb-like Glycosylated Membrane Surface by a Combination of UV-Induced Graft Polymerization and Surface-Initiated ATRP," Langmuir, 23 (12), pp 6684–6690, 2007.
    [46] J. Klug, L. A. Pérez, E. A. Coronado, and G. I. Lacconi, "Chemical and Electrochemical Oxidation of Silicon Surfaces Functionalized with APTES: The Role of Surface Roughness in the AuNPs Anchoring Kinetics," The Journal of Physical Chemistry C, vol. 117, pp. 11317-11327, 2013.
    [47] Wenfeng Zhu, Shugang Pan, Weiwei Wang, Chunbao Zhao, Lude Lu and Xiaoheng Liu, "Hydrothermal synthesis of raisin-bun-like CdTe@C nanocomposites toward enhanced photoluminescence and low cytotoxicity, "NewJ.Chem., 37, 2751, 2013.
    [48] Chang Xu, Tao Wu, Charles Michael Drain, James D. Batteas,Michael J. Fasolka, and Kathryn L. Beers, "Effect of Block Length on Solvent Response of Block Copolymer Brushes: Combinatorial Study with Block Copolymer Brush Gradients, "Macromolecules, 39, 3359-3364, 2006.
    [49] Qin Tua,1, Jian-Chun Wanga,1, Rui Liua, Juan Hea, Yanrong Zhanga, Shaofei Shena, Juan Xua,Jianjun Liuc, Mao-Sen Yuana, Jinyi Wanga, "Antifouling properties of poly(dimethylsiloxane) surfaces modified with
    quaternized poly(dimethylaminoethyl methacrylate) , "Colloids and Surfaces B: Biointerfaces 102 361– 370, 2013.
    [50] Jem-Kun Chen, Bing-Jun Bai, "Diagnosis of breast cancer recurrence after surgery by using poly(2-dimethylaminoethyl methacrylate) brushes as a medium on silicon surface, "Sensors and Actuators B 160 1011– 1019 ,2011.
    [51] T. AIDA, "living and immortal polymerization," Prog. Polym. Sci, vol. 19, pp. 469-528, 1994.
    [52] M. G. Santonicola, G. W. de Groot, M. Memesa, A. Meszynska, and G. J. Vancso, "Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces," Langmuir, vol. 26, pp. 17513-9, Nov 16 2010.
    [53] Su Chen,Jia Zhu,Yongfeng Shen,Chunhui Hu,and Li Chen, "Synthesis of Nanocrystal−Polymer Transparent Hybrids via Polyurethane Matrix Grafted onto Functionalized CdS Nanocrystals," Langmuir, 23 (2), pp 850–854, 2007.
    [54] Ji-Zhao Guo and Hua Cui, "Lucigenin Chemiluminescence Induced by Noble Metal Nanoparticles in the Presence of Adsorbates, "J. Phys. Chem. C,, 111 (33), pp 12254–12259, 2007.

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE