簡易檢索 / 詳目顯示

研究生: 林頌揚
Sung-Yang Lin
論文名稱: 雙波長自校式溫度感測循跡微粒之研發
Development of Dual Wavelength Self-calibrated Temperature Sensitive Tracer Particles
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 黃智永
Chih-Yung Huang
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: 量子點溫度感測塗料溫度感測循跡微粒
外文關鍵詞: Quantum Dots, Temperature Sensitive Paint, Temperature Sensitive Tracer Particles
相關次數: 點閱:252下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究作為溫度感測微粒技術之改良與延伸,改善單色溫度感應循跡微粒之量測誤差,以應用於非侵入式地測量流體流動時之溫度分布。利用攪拌製程將兩種不同溫度敏感性之量子點CdZnSeS/ZnS、CsPbBr3塗覆於聚醯胺微粒的表面上,藉由兩種不同的溫度感測材料之螢光相對強度比進行自我校正正規化,可消除光照度不均勻、光源不穩定、微粒聚集、光漂白和微粒大小等因素所造成的誤差。溫度之計算則使用光強度量測法將量測之螢光強度轉換為溫度。經過實驗比較發現,在製備之製程中兩種量子點同時塗覆實驗結果CsPbBr3放射光峰值為12890.98,CdZnSeS/ZnS放射光峰值為63687.88,差距4.94倍,改為先後塗覆的方法並優化兩種量子點之比例後,CsPbBr3放射光峰值為59105.29,CdZnSeS/ZnS放射光峰值為59483.94,兩種量子點之峰值強度比例結果縮小至峰值幾乎相同。雷射功率之對兩種量子點強度比值之實驗結果則大致為逆相關之規律。最後,溫度可視化之實驗驗證結果發現製備之溫度感應循跡微粒之螢光強度與溫度關係在(溫度範圍內)可由二次曲線擬合,驗證溫度感應微粒之適用性。


    This study is an improvement and extension of temperature sensitive particle technique, and the goal is improve the measurement error of single color temperature sensitive tracer particles for non-invasively measurement of the temperature distribution of the fluid flow. Two different temperature sensitive quantum dots (Quantum Dot, QD) CdZnSeS/ZnS、CsPbBr3 are coated on the surface of polyamid seeding particles by a stirring process. By utilizing the ratio of two different temperature sensitive materials, an self-calibrated normalized calibration curve can be obtained to eliminate errors caused by nonuniform illumination, nonuniform coating density, photobleaching and particle size variations. The temperature is calculated by converting the measured fluorescence intensity to temperature using an intensity-based method. The simultaneous coating test results show the peak of CsPbBr3 emission is 12890.98 and the peak of CdZnSeS/ZnS emission is 63687.88, corresponding to a 4.94 times intensity difference. After changing the coating method to sequential coating and optimizing the ratio of the two quantum dots, an comparable intensity peaks of CsPbBr3 emission (59105.29) and CdZnSeS/ZnS (59843.94) can be achieved. The experimental results of laser power to the relative intensity of the two quantum dots follow an inverse correlation. Lastly, the temperature visualization results show that the relationship between the fluorescence intensity of the prepared temperature sensitive tracer particles and the temperature (in the temperature range) can be fitted by the quadratic curve to verify the applicability of the temperature sensitive particles.

    目錄 目錄 4 圖目錄 6 表目錄 9 第 1 章 緒論 10 1.1介紹 10 1.2文獻回顧 10 1.2.1 溫度量測技術發展 10 1.2.2 量子點(Quantum dot) 15 1.2.3 溫度與速度場同時量測技術回顧 18 1.3研究目的 21 1.4論文架構 22 第 2 章 實驗方法 23 2.1 溫度感測塗料介紹 23 2.1.1 溫度感測塗料原理 23 2.1.2 溫度感測塗料量測方法 26 2.1.3 溫度校正曲線 27 2.2 溫度感測塗料之選用 27 2.3 微粒塗覆方法 36 2.3.1 微粒塗覆實驗設置 36 2.4 微粒塗覆結果驗證 40 2.5 塗覆溫度感測塗料後微粒之溫度校正曲線製作 40 2.5.1 校正曲線製作實驗設置 40 2.6 溫度場可視化實驗 47 2.6.1 溫度場可視化實驗 47 第 3 章 結果與討論 55 3.1 微粒塗覆實驗結果 55 3.1.1 雙波長溫度感測循跡微粒光譜量測結果 55 3.1.2 掃描電子顯微鏡(SEM)微粒影像觀察結果 60 3.2 雙波長溫度感測循跡微粒光譜量測結果 63 3.2.1 355nm雷射之校正曲線實驗結果 63 3.2.2 不同波長雷射之校正曲線實驗結果 65 3.2.3 不同功率雷射之校正曲線實驗結果 69 3.2.4 光譜實驗結果與討論 71 3.3 溫度場可視化實驗應用於加熱測試流道 77 3.3.1 溫度場可視化實驗 77 3.3.2 溫度場可視化之結果 78 3.3.3 實驗結果與討論 80 第 4 章 結果與未來工作 87 4.1 結論 87 4.2 建議及未來工作 88

    參考資料
    [1] J. Sakakibara and R. J. Adrian, "Whole field measurement of temperature in water using two-color laser induced fluorescence," Experiments in Fluids, vol. 26, pp. 7-15, 1999/01/01 1999.
    [2] D. B. R. Kenning, T. Kono, and M. Wienecke, "Investigation of boiling heat transfer by liquid crystal thermography," Experimental Thermal and Fluid Science, vol. 25, pp. 219-229, 2001/11/01/ 2001.
    [3] T. Liu, Sullivan, John P., Pressure and Temperature Sensitive Paints, 2005.
    [4] M. Alfaro, G. Paez, and M. Strojnik, "Calibration and evaluation of EuTTA fluorescence as active medium for IR-to-visible conversion," in Optical Engineering + Applications, 2008, p. 10.
    [5] H. Sakaue and K. Ishii, "Optimization of Anodized-Aluminum Pressure-Sensitive Paint by Controlling Luminophore Concentration," Sensors, vol. 10, pp. 6836-6847, 2010.
    [6] K. Koren and M. Kühl, "A simple laminated paper-based sensor for temperature sensing and imaging," Sensors and Actuators B: Chemical, vol. 210, pp. 124-128, 2015/04/01/ 2015.
    [7] C. Tao, D. Peng, Y. Liu, X. Zhao, and K. Kim, A novel lifetime-based phosphor thermography using three-gate scheme and a low frame-rate camera vol. 80, 2017.
    [8] P. Chamarthy, S. V. Garimella, and S. T. Wereley, "Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence," International Journal of Heat and Mass Transfer, vol. 53, pp. 3275-3283, Jul 2010.
    [9] P. Danehy, P. I. Tiemsin, C. J. Wohl, K. T. Lowe, P. Maisto, G. Byun, et al., Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging, 2012.
    [10] J. Massing, D. Kaden, C. J. Kähler, and C. Cierpka, "Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics," Measurement Science and Technology, vol. 27, p. 115301, 2016.
    [11] 馬遠榮, "低維奈米材料," 2004.
    [12] 科技台灣, "量子局限效應(Quantum confinement effect) " 2017.
    [13] 曾致翔, "CdSeS三元量子點材料的製備與光學性質探討," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2009.
    [14] 張慶斌,曾慶輝,鄭金菊,孔祥貴,屈玉秋,宋凱, "CdSe / ZnSe / ZnS多殼量子點的合成與表徵," 2009.
    [15] G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, "Quantum-dot optical temperature probes," Applied Physics Letters, vol. 83, pp. 3555-3557, 2003.
    [16] R. Liang, R. Tian, W. Shi, Z. Liu, D. Yan, M. Wei, et al., "A temperature sensor based on CdTe quantum dots-layered double hydroxide ultrathin films via layer-by-layer assembly," Chem Commun (Camb), vol. 49, pp. 969-71, Feb 01 2013.
    [17] P. Dey, J. Paul, J. Bylsma, D. Karaiskaj, J. M. Luther, M. C. Beard, et al., "Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots," Solid State Communications, vol. 165, pp. 49-54, Jul 2013.
    [18] P.-C. Chen, Y.-N. Chen, P.-C. Hsu, C.-C. Shih, and H.-T. Chang, Photoluminescent organosilane-functionalized carbon dots as temperature probes vol. 49, 2013.
    [19] P. Zhou, X. S. Zhang, X. J. Liu, J. P. Xu, and L. Li, "Temperature-dependent photoluminescence properties of quaternary ZnAgInS quantum dots," Optics Express, vol. 24, pp. 19506-19516, Aug 2016.
    [20] H. G. Maas, A. Gruen, and D. Papantoniou, "Particle tracking velocimetry in three-dimensional flows," Experiments in Fluids, vol. 15, pp. 133-146, 1993/07/01 1993.
    [21] D. David Estruch-Samper, Particle Image Velocimetry, R. J. Adrian and J. Westerweel, Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge, CB2 2RU, UK. 2011. 558pp. £75. ISBN 978-0-521-44008-0 vol. 116, 2012.
    [22] 黎振安, "The Study of Fluid Flow and Heat Transfer Inside Rectangular PDMS microchannels," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2011.
    [23] S. Someya, Y. Li, K. Ishii, and K. Okamoto, "Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles," Experiments in Fluids, vol. 50, pp. 65-73, 2011/01/01 2011.
    [24] 陳裕婷, "以溫度與速度同步量測技術探討突縮擴結構流場與熱傳增益," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2015.
    [25] S. D. Peterson and M. Porfiri, "Flow velocity and temperature sensing using thermosensitive fluorescent polymer seed particles in water AU - Cellini, Filippo," International Journal of Smart and Nano Materials, vol. 8, pp. 232-252, 2017/10/02 2017.
    [26] 陳建志, "塗覆量子點之溫度感測流場循跡微粒之研發," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018.
    [27] 林雋堯, "應用溫度感測微粒於熱渦環之流場與溫度場可視化," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2017.
    [28] 王筱姍、陳韋廷、劉如熹, "發光二極體用之螢光粉熱特性探討," 2013.
    [29] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, et al., "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Letters, vol. 15, pp. 3692-3696, 2015/06/10 2015.
    [30] A. M. Smith and S. Nie, "Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering," Accounts of Chemical Research, vol. 43, pp. 190-200, 2010/02/16 2010.
    [31] M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, "Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties," Analytical Chemistry, vol. 81, pp. 6285-6294, 2009.
    [32] A. M. Brouwer, "Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report)," Pure and Applied Chemistry, vol. 83, pp. 2213-2228, 2011.
    [33] G. Reynolds and K. H. Drexhage, "New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers," Optics Communications, vol. 13, pp. 222-225, 1975.
    [34] M. Galanin, A. Kutyonkov, V. Smorchkov, Y. P. Timofeev, and Z. Chizhikova, "Measurement of photoluminescence quantum yield of dye solutions by the Vavilov and integrating-sphere methods," Optics and Spectroscopy, vol. 53, pp. 405-409, 1982.
    [35] K. Drexhage, "Fluorescence efficiency of laser dyes," 1977.
    [36] 林志嶽, "CsPbX3鈣鈦礦量子點材料性質及發光元件研究," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2017.
    [37] W. Chen, X. Xin, Z. Zang, X. Tang, C. Li, W. Hu, et al., "Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application," Journal of Solid State Chemistry, vol. 255, pp. 115-120, 2017/11/01/ 2017.
    [38] H. Johnston, "Quantum dots entangled with single photons," 2015.

    QR CODE