簡易檢索 / 詳目顯示

研究生: 廖偉程
Wei-Cheng Liao
論文名稱: 動態量測拋光墊系統於修整性能與銅膜晶圓化學機械平坦化之相關性研究
Study on Correlation between Pad Dressing Performance and Cu-CMP of Pads by Dynamic Measuring System
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 趙崇禮
Chung-Lii Chao
蔡曜陽
Yao-Yang Tsai
劉顯光
Hsien-Kuang LIU
田維欣
Wei-Hsin Tien
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 190
中文關鍵詞: 化學機械平坦化彩色共軛焦拋光墊性能指標動態量測
外文關鍵詞: Chemical Mechanical Planarization, Chromatic Confocal, Pad Performance Index, Dynamic Measuring
相關次數: 點閱:262下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究延續蔡明城開發之動態量測拋光墊性能指標系統,透過彩色共軛焦感測器架設於CMP機台上,利用拋光機盤面旋轉與搖臂搖擺達到拋光墊大面積掃描,利用自製軟體分析其表面訊號,計算拋光墊非均勻度(PU)、壽命指標(PELI)、承載比(Bearing Area Ratio)以及表面粗糙度。研究方法之實驗A進行拋光機台工作頻率量測,濾除3Hz與40~50Hz之工作頻率,避免訊號干擾拋光墊指標計算。實驗B1為動態乾、濕式拋光墊馬拉松量測,當拋光盤面轉速大於40 rpm時,掃描軌跡分布與拋光墊性能指標乾濕式分析誤差小於10%。實驗B2為銅膜晶圓的馬拉松實驗評估修整參數,選用2 psi 修整參數,在馬拉松實驗可達到PU大於50%與PELI小於50%。實驗C1在無修整的條件下拋光30片銅膜晶圓,其材料移除率、非均勻性與表面粗糙度對於承載比中的反應區(Rpk)分別具有高度(0.91)、中度(0.68)與高度(-0.81)相關性指標。實驗C2由實驗B2得到之參數固定修整參數進行拋光150片銅膜晶圓的馬拉松實驗,得銅膜晶圓的材料移除率對於承載比中的傳輸區(Rk)、PELI與PU分別具有高度(0.87)、高度(0.94)和高度(-0.94)相關性指標。此套系統能動態量測拋光墊表面形貌變化,並分析與晶圓指標之相關性,未來可將此系統應用於拋光製程調控最佳化。


    This study is to improve a dynamic pad monitoring system (DPMS) developed by Ming-Cheng Tsai. Chromatic confocal sensor attaches on a swing dressing arm in Chemical Mechanical Polishing (CMP) tool. Dynamic scan of polishing pad is performed by a rotary motion of polishing platen and the swing motion of dressing arm. The surface signal has been analyzed by developed software to calculate pad uniformity (PU), pad efficiency lifetime index (PELI), bearing area ratio (BAR) and surface roughness. Experiment A is to measure the working frequency of the HAMAI polishing machine and filter the working frequency. Experiment B1 is to dynamically measure pad surface in dry and wet condition as well as compare with pad performance index. Results show that pad performance index error is less than 10% when the platen rotation speed is 40 rpm. Experiment B2 is to achieve PU change it larger than 50% and PELI less than 50%, and the dresser down force with 2 psi. Experiment C1 is a marathon CMP of 30 pieces of copper blanket wafers without dressing pad. It indicates that MRR and NU are highly related to Rpk. Experiment C2 is to conduct a marathon experiment of polishing 150 copper film wafers with fixed parameters. It is obvious that MRR, Sa and N.U. are highly related to PU and PELI as well as MRR is highly related to Rk. Results of the study show that DPMS can monitor the change of pad profile, which are correlated with wafer quality by CMP. Such results can use topography to predict pad life time and also can be further applied on Cu-CMP process control in CMP process.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 XI 表目錄 XVIII 符號表 XX 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 5 1.3 論文架構 6 第二章 文獻回顧 8 2.1 拋光墊量測方法 8 2.2 拋光墊性能分析 15 2.3 CMP拋光機量測系統應用專利分析 23 2.3.1 量測系統應用 23 2.3.2 量測設備安裝方式 27 2.4 文獻回顧總結 31 第三章 拋光墊性能指標與動態量測訊號處理 33 3.1 動態量測系統 33 3.1.1 量測技術評估 33 3.1.2 搖臂機構 34 3.1.3 彩色共軛焦原理 37 3.1.4 搖臂量測系統座標定義與軌跡方程式 38 3.2 拋光墊性能指標 40 3.3 拋光墊動態量測訊號分析方法 44 3.3.1 快速傅立葉轉換(Fast Fourier Transform, FFT) 44 3.3.2 FIR與IIR濾波器比較 44 3.3.3 極端值判斷法(Hampel identifier) 46 3.3.4 中值濾波(Median Filter) 48 3.3.5 高斯濾波 (Gaussian Filter) 49 3.4 拋光墊動態量測訊號分析 50 3.4.1 動態量測訊號分析流程 50 3.4.1 拋光墊非均勻度訊號處理分析 51 3.4.2 拋光墊溝槽訊號處理分析 53 3.4.3 粗糙度訊號處理分析 56 3.5 動態量測拋光墊分析軟體 57 3.5.1 動態量測程式說明 57 3.5.2 拋光墊動態分析軟體人機介面建置 62 3.6 化學機械拋光製程終點偵測 64 第四章 動態量測系統實驗設備與規劃 66 4.1 動態量測系統實驗設備 66 4.1.1 商用拋光機 66 4.1.2 彩色共軛焦感測器 67 4.2 量測設備 68 4.3 實驗耗材 70 4.3.1 拋光墊 70 4.3.2 測試用晶圓 71 4.3.3 拋光液 73 4.3.4 鑽石修整器 75 4.4 實驗流程 76 4.4.1 實驗A機台工作頻率量測與分析 77 4.4.2 實驗B1拋光墊乾、濕式動態量測-馬拉松實驗 78 4.4.3 實驗B2拋光墊修整參數評估 79 4.4.4 實驗C1無修整下30片銅膜晶圓拋光實驗 80 4.4.5 實驗C2拋光150片銅膜晶圓-馬拉松實驗 81 4.4.6 實驗C3無CMP下修整50次拋光墊 82 第五章 拋光墊動態量測分析結果與討論 83 5.1 機台工作頻率量測與分析(實驗A) 84 5.1.1 不同量測參數之工作頻率分析 85 5.1.2 濾波器參數設定 90 5.1.3 基準線建立 91 5.2 拋光墊動態乾濕式量測-馬拉松實驗(實驗B1) 92 5.2.1 拋光墊乾濕式量測指標分析比較 93 5.2.2 拋光墊乾濕式量測穩定性比較 95 5.3 拋光墊修整參數評估(實驗B2) 97 5.3.1 拋光墊非均勻度分析 98 5.3.2 拋光墊溝槽磨耗分析 99 5.4 無修整下拋光30片銅膜晶圓(實驗C1) 100 5.4.1 銅模晶圓之移除率與表面粗糙度之結果 103 5.4.2 銅膜晶圓與拋光墊性能指標PU與PELI分析 104 5.4.3 銅膜晶圓與承載比及表面粗糙度之相關性分析 105 5.5 拋光150片銅膜晶圓-馬拉松實驗(實驗C2) 108 5.5.1 銅膜晶圓之移除率與表面粗糙度之結果 108 5.5.2 銅膜晶圓與拋光墊非均勻度指標(PU)分析 110 5.5.3 銅膜晶圓與拋光墊壽命指標(PELI)分析 115 5.5.4 銅膜晶圓與承載比及拋光墊面粗糙度相關性分析 120 5.6 無CMP下修整50次拋光墊-馬拉松 (實驗C3) 125 5.6.1 修整50次拋光墊溝槽磨耗分析 126 5.7 綜合結果與討論 128 第六章 結論與建議 132 6.1 結論 132 6.2 建議 133 參考資料 134 附錄A拋光墊種類 137 附錄B水膜排除系統 139 附錄C實驗量測設備 140 附錄D拋光墊動態乾濕式馬拉松量測 143 附錄E馬拉松實驗晶圓移除率 146 附錄F馬拉松實驗晶圓表面粗糙度 147 附錄G馬拉松實驗晶圓表面形貌 148 附錄H動態量測拋光墊非均勻度 154 附錄I動態量測拋光墊表面粗糙度 159 附錄J糙度計算說明 164 作者簡介 167

    [1] TSIA, "2019 年第四季暨全年台灣半導體產業回顧與展望," 台灣半導體產業協會第92期, 2020.
    [2] ICInsights, "Taiwan Edges South Korea as Largest Base for IC Wafer Capacity," Research Bulletins, 2020.
    [3] S. Babu, "Advances in Chemical Mechanical Planarization (CMP)," Woodhead Publishing, 2016.
    [4] Y. Moon, "Chemical and physical mechanisms of dielectric chemical mechanical polishing (CMP)," in Advances in Chemical Mechanical Planarization (CMP), 2016.
    [5] Z. C. Li, E. A. Baisie, and X. H. Zhang, "Diamond disc pad conditioning in chemical mechanical planarization (CMP): A surface element method to predict pad surface shape," Precision Engineering, 2012.
    [6] W. J. Choi, S. P. Jung, J. G. Shin, D. Yang, and B. H. Lee, "Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT)," Optics Express, 2011.
    [7] S. D. Monaco, F. Calderone, M. Fritah, T. L. Tiec, and A. Laurent, "Chemical Mechanical Planarization (CMP) In-Situ pad groove monitor through Fault Detection and Classification (FDC) system," in ICPT 2012 - International Conference on Planarization/CMP Technology, 2012.
    [8] K. Suzuki, T. Tajiri, P. Khajornrungruang, Y. Mochizuki, H. Hiyama, and H. Matsuo, "Study on evaluation method for surface topography of polishing pad based on optical Fourier transform," in 2015 International Conference on Planarization/CMP Technology (ICPT), 2015.
    [9] Sensofar Co., "Surface Metrology for In-Situ Pad Monitoring in Chemical Mechanical Planarization (CMP)," Azo Materials, 2015.
    [10] A. J. Khanna, P. Jawali, D. Redfield, R. Kakireddy, and A. Chockalingam, "Methodology for pad conditioning sweep optimization for advanced nodes," Microelectronic Engineering, 2019.
    [11] Z. Yao, J. Xie, Y. Tian, and Q. Huang, "Using Hampel Identifier to Eliminate Profile-Isolated Outliers in Laser Vision Measurement," Journal of Sensors, 2019.
    [12] K. H. Park, H. J. Kim, O. M. Chang, and H. D. Jeong, "Effects of pad properties on material removal in chemical mechanical polishing," Journal of Materials Processing Technology, 2007.
    [13] L. C. Zhang, A. Q. Biddut, and Y. M. Ali, "Dependence of pad performance on its texture in polishing mono-crystalline silicon wafers," International Journal of Mechanical Sciences, 2010.
    [14] H. Jeong, H. Lee, S. Choi, Y. Lee, and H. Jeong, "Prediction of Real Contact Area from Microtopography on CMP Pad," Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2012.
    [15] 溫禪儒, "單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究," 碩士論文, 國立臺灣科技大學, 2014.
    [16] 陳鈺庭, "拋光墊修整磨合期對銅膜晶圓化學機械拋光影響研究," 碩士論文, 國立臺灣科技大學, 2014.
    [17] 蔡明城, "開發線上監控量測方法與系統應用於拋光墊性能水準分析之研究," 碩士論文, 國立臺灣科技大學, 2016.
    [18] 傅彥綺, "拋光墊線上量測系統於修整性能分析與銅化學機械拋光之相關性研究," 碩士論文, 國立臺灣科技大學, 2017.
    [19] 陳俊臣, "線上拋光墊性能監測之彩色共軛焦系統取樣分析," 碩士論文, 國立臺灣科技大學, 2018.
    [20] D.Sivakumar and Q.Jun, "Predictive Filter for Polishing Pad Wear Rate Monitoring," TW201930008A, 2019.
    [21] C.-H. CHO, K.-P. CHUNG, and Y.-W. CHANG, "Surface Measurement Device and Method Thereof," US20170059311, 2017
    [22] T. Tetsuji, N. Keisuke, and Y. Satoru, "Predictive Filter for Polishing Wear Rate Monitoring," US8870625 B2, 2014.
    [23] P. M. Antoine, W. Y. Hsu, and M. Hichem, "CMP pad thickness and profile monitoring system," US8043870 B2, 2011.
    [24] Q. Jun, J. B. Dominic, C. Ningzhuo, A. S. Boguslaw, and H. O. Thomas, "Polishing Pad and System with Window Support," US8393933 B2, 2013.
    [25] O. Shinro and S. Kazuo, "Polishing Apparatus and Polishing Pad," US7081044 B2, 2006.
    [26] H. Liu, S. Shah, and W. Jiang, "On-line outlier detection and data cleaning," Computers and Chemical Engineering, 2004.
    [27] E. Gedraite and M. Hadad, Investigation on the effect of a Gaussian Blur in image filtering and segmentation. 2011.
    [28] C.-C. Chen and P. Quoc Phong, "Study on diamond dressing for non-uniformity of pad surface topography in CMP process," The International Journal of Advanced Manufacturing Technology, 2017.
    [29] M. Stewart, "A New Approach to the Use of Bearing Area Curve," International Honing Technologies and Applications, 1990.

    QR CODE