簡易檢索 / 詳目顯示

研究生: 鍾誠
Cheng Jhong
論文名稱: 電致動力輔助化學機械平坦化應用於奈米雙晶銅圖案化晶圓平坦化研究
Study on Electro-Kinetic Force Assisted Chemical Mechanical Planarization for Nanotwinned Copper/Polyimide Pattern Wafers
指導教授: 陳炤彰
Chao-Chang Chen
呂立鑫
Li-Shin Lu
口試委員: 陳智
Chih Chen
張香鈜
Mike Chang
田維欣
Wei Hsin Tien
呂立鑫
Li-Shin Lu
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 196
中文關鍵詞: 電致動力輔助化學機械平坦化最佳化電極設計銅膜晶圓奈米雙晶銅圖案化晶圓
外文關鍵詞: Electro-Kinetic Force Assisted Chemical Mechanical Planarization(EKF-CMP), Optimization of Electrode Design, Copper Blanket Wafer (CuB), Nano-twinned Cu/Polyimide Pattern Wafer (Nt-Cu/PI pattern wafer)
相關次數: 點閱:438下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過交錯式電極最佳化設計,以優化電致動力輔助化學機械平坦化製程(Electro-Kinetic Force Chemical Mechanical Planarization, EKF-CMP),應用於銅膜晶圓(CuB)、奈米雙晶銅膜晶圓(Nanotwinned-Copper, Nt-Cu wafer)、奈米雙晶銅圖案化晶圓(Nanotwinned-Copper /Polyimide, Nt-Cu/PI pattern wafer)。本研究目標為達到Nt-Cu/PI中銅柱(Bump)形貌高於Polyimide(PI)之階梯形貌,並改善Bump以及PI之導線凹陷(Dishing)問題。本研究使用COMSOL Multiphysics商用模擬軟體建構電滲流模組,利用頂層粒子濃度指標進行模擬數據量化,靜態模擬結果顯示電極寬度以及間距為2 mm具最濃頂層粒子濃度;移動式電滲流模組模擬以靜態最佳化電極設計進行平行式移動電極模擬,模擬結果顯示EKF-CMP在相同速度下可提升頂層粒子濃度。本研究使用實驗設計方法進行CuB與Nt-Cu製程分析,由趨勢圖得知影響材料移除率(Material Removal Rate, MRR)最大者為拋光液流率。以最佳化參數進行Nt-Cu/PI平坦化製程,實驗結果驗證EKF-CMP之製程時間可縮短20%,Nt-Cu與PI之Dishing改善率分別為16.35%以及3.31%。本研究結果可改善奈米雙晶銅圖案化晶圓製程應用。


    In this study, the optimized electrode design enhances the Electro-Kinetic Chemical Mechanical Planarization (EKF-CMP) process. This research studies several types of wafers such as Copper blanket wafer (CuB), Nanotwinned-copper blanket wafer (Nt-Cu wafer), and Nanotwinned Copper/Polyimide pattern wafer (Nt-Cu/PI pattern wafer). The goal of this research is to obtain a step-height profile of the Nt-Cu/PI wafer by CMP. As the Nt-Cu profile is higher than Polyimide (PI), it further reduces dishing problem of the bump and PI. The COMSOL Multiphysics commercial simulation software is used to construct electro-osmosis flow (EOF) simulation modules. Simulation analysis uses particle concentration on the top layer of the liquid layer, between the wafer and pad, as an index for the simulation. The moving EOF model uses the optimized static electrode design as a basis voltage for parallel moving electrode simulation. The simulation results show that EKF-CMP increases the particle concentration of the top layer at a similar velocity. As a result, the effect of polishing platen speed in EKF-CMP is greater than EOF. The experiment is completed with the planarization process of CuB and Nt-Cu by Design of Experiment (DOE) method. The slurry flow rate exhibits a significant impact on the Material Removal Rate (MRR) of CMP. The planarization process of Nt-Cu/PI pattern wafers conducts with the optimized parameters and results show that the EKF-CMP process shortens the processing time by 20%, and the dishing effects of Nt-Cu and PI can reduce by 16.35% and 3.31%, respectively. Results of this study can be used to improve Nt-Cu/PI pattern wafers for wafer fabrication applications.

    摘要 I Abstract II 誌謝 III 目錄 VI 符號表 XI 圖目錄 XIII 表目錄 XXII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 6 第二章 文獻回顧 8 2.1 化學機械平坦化的影響參數 8 2.2 銅膜晶圓化學機械平坦化 13 2.3 奈米雙晶銅圖案化晶圓 18 2.4 電致動力輔助化學機械平坦化 25 2.5 COMSOL運用於化學機械平坦化與電滲流的模擬 32 第三章 電極模組模擬分析與設計方法 36 3.1 流場可視化實驗與電滲流流場模擬 37 3.1.1 流場可視化實驗設備與原理 38 3.1.2 粒子圖像分析法 43 3.1.3 電滲流模組模擬建構 48 3.1.4 實驗與模擬結果驗證 52 3.2 靜態電滲流模組模擬電極參數分析 55 3.3 移動式電滲流模組模擬平移式移動電極分析 57 3.3.1 拋光盤轉速轉換為平行式移動速度 57 3.3.2 移動式電滲流模組分析 58 3.4 頂層粒子濃度分析與電極變異模擬結果 61 3.4.1 頂層粒子濃度 61 3.4.2 靜態電滲流模組模擬結果分析 63 3.4.3 移動式電滲流模組模擬結果分析 69 3.5 導電電極板設計與製作 70 3.5.1 組合式拋光盤介紹 70 3.5.2 導電電極板設計與分析 71 3.6 奈米雙晶銅圖案化晶圓之階梯形貌 74 第四章 EKF-CMP實驗與規劃 76 4.1 EKF-CMP系統設置與實驗設備 76 4.1.1 摩擦力感量測系統(Friction Sensor System, FSS) 77 4.1.2 奈米壓痕機械性質分析儀 78 4.1.3 恆電位儀 79 4.2 實驗耗材 80 4.2.1 拋光墊 80 4.2.2 拋光液 81 4.2.3 測試晶圓 83 4.3 量測儀器 85 4.4 實驗規劃 86 4.4.1 實驗A 材料性質分析 87 4.4.2 實驗B CMP/EKF-CMP製程實驗設計分析 88 4.4.3 實驗C 階梯形貌平坦化製程 89 第五章 結果與討論 90 5.1 材料性質分析(實驗A) 91 5.1.1 奈米壓痕實驗 91 5.1.2 動電位極化曲線分析 93 5.1.3 選擇比分析與探討 98 5.2 CMP/EKF-CMP製程實驗設計分析(實驗B) 100 5.2.1 Cu/Nt-Cu薄膜晶圓CMP製程探討 100 5.2.2 製程最佳化參數分析 104 5.2.3 Cu/Nt-Cu薄膜晶圓EKF-CMP製程探討 107 5.3 階梯形貌平坦化製程(實驗C) 110 5.3.1 Nt-Cu/PI製程前形貌探討 111 5.3.2 Nt-Cu/PI於CMP/EKF-CMP製程之CoF探討 113 5.3.3 Nt-Cu/PI於CMP/EKF-CMP製程效益比較 118 第六章 結論與建議 123 6.1 結論 123 6.2 建議 125 參考文獻 126 附錄 132 附錄A 電致動力理論 132 附錄B COMSOL參數設定表 137 附錄C 量測儀器與設備 142 附錄D 奈米壓痕機械性質分析結果 146 附錄E 銅膜晶圓表面粗糙度量測 148 附錄F 奈米雙晶銅膜晶圓表面粗糙度量測 153 附錄G 奈米雙晶銅圖案化晶圓形貌量測結果 158 作者簡介 168

    [1] B. McClean, Transistor Count Trends Continue to Track with Moore’s Law. IC Insights, 2020.
    [2] H. Lee, D. Lee, and H. Jeong, "Mechanical aspects of the chemical mechanical polishing process: A review," International Journal of Precision Engineering and Manufacturing, vol. 17, no. 4, pp. 525-536, 2016.
    [3] J. Luo et al., "Preparation and Characterization of High Thermal Conductivity and Low CTE Polyimide Composite Reinforced with Diamond Nanoparticles/SiC Whiskers for 3D IC Interposer RDL Dielectric," Applied Sciences, vol. 9, no. 9, 2019, doi: 10.3390/app9091962.
    [4] 許明哲, 先進微電子3D-IC構裝. 五南圖書出版社股份有限公司: 楊榮川, 2020.
    [5] J. H. Lau, "Status and Outlooks of Flip Chip Technology," IPC EXPO Proceedings, pp. 1-20, 2017.
    [6] K. D. Beyer et al., "Method for removing protuberances at the surface of a semiconductor wafer using a chem-mech polishing technique," ed: Google Patents, 1987.
    [7] H. Hocheng, H. Tsai, and M. Tsai, "Effects of kinematic variables on nonuniformity in chemical mechanical planarization," International Journal of Machine Tools and Manufacture, vol. 40, no. 11, pp. 1651-1669, 2000.
    [8] Y. Wang, Y. Chen, F. Qi, D. Zhao, and W. Liu, "A material removal model for silicon oxide layers in chemical mechanical planarization considering the promoted chemical reaction by the down pressure," Tribology International, vol. 93, pp. 11-16, 2016.
    [9] L. Peckler, R. Han, Y. Sampurno, and A. Philipossian, "Real-Time Shear and Normal Force Trends in Copper Chemical Mechanical Planarization with Different Conditioning Discs," ECS Journal of Solid State Science and Technology, vol. 7, no. 3, pp. P125-P131, 2018.
    [10] C. L. Jackson and D. W. Mosley, "Model Friction Studies of Chemical Mechanical Planarization Using a Pin-on-Disk Tribometer," Tribology Letters, vol. 67, no. 3, 2019.
    [11] Q. Xu, L. Chen, J. Liu, and H. Cao, "A Wafer-Scale Material Removal Rate Model for Chemical Mechanical Planarization," ECS Journal of Solid State Science and Technology, vol. 9, no. 7, 2020.
    [12] X. Luan, Y. Liu, C. Wang, X. Niu, J. Wang, and W. Zhang, "A study on exploring the alkaline copper CMP slurry without inhibitors to achieve high planarization efficiency," Microelectronic Engineering, vol. 160, pp. 5-11, 2016.
    [13] Q. Xu, L. Chen, F. Yang, and H. Cao, "Influence of slurry components on copper CMP performance in alkaline slurry," Microelectronic Engineering, vol. 183-184, pp. 1-11, 2017.
    [14] Z. Zhang, J. Cui, J. Zhang, D. Liu, Z. Yu, and D. Guo, "Environment friendly chemical mechanical polishing of copper," Applied Surface Science, vol. 467-468, pp. 5-11, 2019.
    [15] X. Guo et al., "Study on chemical effects of H2O2 and glycine in the Copper CMP process using ReaxFF MD," Applied Surface Science, vol. 508, 2020.
    [16] S. Hong, D. Han, J. Kwon, S. J. Kim, S. J. Lee, and K.-S. Jang, "Influence of abrasive morphology and size dispersity of Cu barrier metal slurry on removal rates and wafer surface quality in chemical mechanical planarization," Microelectronic Engineering, vol. 232, 2020.
    [17] Maria G Salinas, Allie M Mikos, Madison Hill, Amy Mlynarski, and J. J. Keleher, "<Effect of Chemicals and Slurry Particles on Chemical Mechamical Polishing of Polyimide.pdf>," Japanese Journal of Applied Physics, vol. 39, no. 3R, 2000.
    [18] H. Y. Hsiao et al., "Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper," Science, vol. 336, no. 6084, pp. 1007-10, May 25 2012.
    [19] 朱奕丞, "三維積體電路封裝接點之研究:微凸塊可靠度與銅對銅直接接合," 博士, 材料科學與工程學系所, 國立交通大學, 新竹市, 2017.
    [20] J. Y. Juang et al., "Copper-to-copper direct bonding on highly (111)-oriented nanotwinned copper in no-vacuum ambient," Sci Rep, vol. 8, no. 1, p. 13910, Sep 17 2018.
    [21] K. C. Shie, J.-Y. Juang, and C. Chen, "Instant Cu-to-Cu direct bonding enabled by 〈111〉-oriented nanotwinned Cu bumps," Japanese Journal of Applied Physics, vol. 59, no. SB, 2020, doi: 10.7567/1347-4065/ab5697.
    [22] 謝啟祥, "電場輔助化學機械拋光製程於銅膜平坦化之研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2011.
    [23] 楊立晨, "電致動力輔助化學機械平坦化製程應用於功能性晶圓平坦化之研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2014.
    [24] 薛旻岳, "電致動力輔助化學機械平坦化之組合式電極盤設計應用於矽導微孔晶圓研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2015.
    [25] 蔡岳勳, "電致動力應用於銅化學機械拋光平坦化效應研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2015.
    [26] 郭尚儒, "電致動力輔助化學機械平坦化製程應用於玻璃穿孔晶圓平坦化研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2016.
    [27] 林昱銘, "電致動力輔助化學機械平坦化加工之雙向交錯式電極開發應用於矽導微孔晶圓研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018.
    [28] 邱上峰, "富勒烯複合拋光液應用於電致動力輔助銅化學機械拋光研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2019.
    [29] S.-m. Sim et al., "Fracture analysis of anodically bonded silicon substrates during the CMP process," Micro and Nano Systems Letters, vol. 6, no. 1, 2018.
    [30] T. Zhao, J. Yuan, Q. Deng, K. Feng, Z. Zhou, and X. Wang, "Contrast Experiments in Dielectrophoresis Polishing (DEPP)/Chemical Mechanical Polishing (CMP) of Sapphire Substrate," Applied Sciences, vol. 9, no. 18, 2019.
    [31] S. Mondal and S. De, "Mass transport in electrokinetic microflows with the wall reaction affecting the hydrodynamics," Theoretical and Computational Fluid Dynamics, vol. 35, no. 1, pp. 39-60, 2020.
    [32] 郭家辰, "探討具有凹槽狀收集電極之二階靜電集塵器內之充電微粒運動特性," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020.
    [33] W. Thielicke and E. J. Stamhuis, "PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB," Journal of Open Research Software, vol. 2, 2014, doi: 10.5334/jors.bl.
    [34] Y. Moon, "Chemical and physical mechanisms of dielectric chemical mechanical polishing (CMP)," in Advances in Chemical Mechanical Planarization (CMP), 2016, pp. 3-26.
    [35] K. Noh, N. Saka, and J.-H. Chun, "A mechanical model for erosion in copper chemical-mechanical polishing," 2003.
    [36] L. J. Cheng, "Electrokinetic ion transport in nanofluidics and membranes with applications in bioanalysis and beyond," Biomicrofluidics, vol. 12, no. 2, p. 021502, Mar 2018.
    [37] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, "Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications," Chem Soc Rev, vol. 39, no. 3, pp. 1153-82, Mar 2010.
    [38] A. Alizadeh, L. Zhang, and M. Wang, "Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls," J Colloid Interface Sci, vol. 431, pp. 50-63, Oct 1 2014.
    [39] S.-J. Park and M.-K. Seo, "Intermolecular Force," in Interface Science and Composites, (Interface Science and Technology, 2011, pp. 1-57.
    [40] K. Pate and P. Safier, "Chemical metrology methods for CMP quality," Advances in Chemical Mechanical Planarization (CMP), 2016, pp. 299-325.
    [41] J. H. Masliyah and S. Bhattacharjee, Electrokinetic and colloid transport phenomena. John Wiley & Sons, 2006.
    [42] 魚崎浩平;喜多英明, 基本電化學. 復漢出版社: 沈岳林, 2001.
    [43] A. V. Delgado et al., "Measurement and interpretation of electrokinetic phenomena," J Colloid Interface Sci, vol. 309, no. 2, pp. 194-224, May 15 2007.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 2024/08/27 (校外網路)
    全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE