簡易檢索 / 詳目顯示

研究生: 林柏任
Bo-Ren Lin
論文名稱: 薄化銅銀電極搭配異質結構有機吸光層於低溫製作具低電壓高響應度之近紅外光光感測有機薄膜電晶體之技術開發與研究
Low-Temperature Fabrication of NIR Photo-OTFT with Low Operation Voltage and High Responsivity by Using Ultra-thin Cu:Ag Electrode and ClAlPc/C70 Light-Absorbing Layers
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 187
中文關鍵詞: 光感測有機薄膜電晶體近紅外光低操作電壓有機異質結構高響應度載子遷移率
外文關鍵詞: Organic phototransistor, Near-infrared, Low operating voltage, Organic heterojunction, High Responsivity, Carrier mobility
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用Pentacene作為有機薄膜電晶體的主動層兼吸光層,並分為兩個主軸來做探討,第一主軸為製作高響應度之近紅外光光感測有機薄膜電晶體,透過於Pentacene上方沉積ClAlPc和C70做為吸光材料,利用此三種材料之間的HOMO能階匹配和異質接面來提高光電參數,目標在提高元件於近紅外光(780 nm)波長下之光電特性。為了使ClAlPc、C70於近紅外光波段的吸收最佳化,本實驗第一主軸會分成兩個部分進行研究,第一部份是製作單層、雙層、三層結構的吸光層材料片進行UV-Visible分析,目標是找出ClAlPc和C70的最佳鍍率搭配於Pentacene上,以製備最佳品質的薄膜提高近紅外光的吸收效果,經實驗結果可得出ClAlPc、C70在鍍率為0.3 Å/s時,擁有最好的吸收效果。第二部分是以Pentacene作為主動層兼吸光層,ClAlPc、C70作為吸光層搭配矽基板SiO2閘極絕緣層為基底製作光感測有機薄膜電晶體,並在吸光層厚度調變中得出元件在ClAlPc 20 nm 、C70 20 nm下,擁有最佳響應度,並以AFM、UV-Visible Spectrum、PL Spectrum、Exciton Spectrum等材料分析加以佐證。

    第二主軸為低溫製備高性能低操作電壓光感測有機薄膜電晶體,此主軸也會分為兩個部分進行研究,第一部分是製作高性能低操作電壓之有機薄膜電晶體,使用旋轉塗佈(Spin Coating)和原子層沉積(Atomic layer deposition)依序成長High-K閘極絕緣層PVA和Al2O3於ITO玻璃基板,大幅增加元件驅動電流和降低操作電壓,並透過調變ALD的製程溫度提升元件整體電特性,經實驗結果可得出在ALD製程溫度為90°C的條件下,元件擁有最佳的電特性,且為了再近一步提升元件於遲滯(Hysteresis)與負閘極長時間偏壓測試(Negative Bias Stress)的可靠度,將傳統的ITO閘極以圖案化(Patterned)超薄 Cu:Ag閘極取代,以達到元件的平坦化製程。第二部分則是將製作出的高性能低操作電壓有機薄膜電晶體與所調變出之吸光層(ClAlPc、C70)最佳參數做整合,進一步提升元件光電特性,於近紅外光(780 nm)波段達到14.2的高響應度。


    This paper is divided into two main axes of investigation. The first axis focuses on the fabrication of high responsivity organic phototransistor (OPT) for near-infrared (NIR) photodetection. By depositing ClAlPc and C70 on top of pentacene as the light absorbing material, the aim is to enhance the optoelectronic parameters by exploiting the HOMO energy level alignment and heterojunction formation between these three materials. The aim is to significantly improve the photonic properties of the devices at a specific near-infrared wavelength of 780 nm, thereby achieving superior optoelectronic performance.
    The first axis of this experiment is divided into two parts. In the first part, single-layer, double-layer, and triple-layer structures of light-absorbing materials are fabricated and subjected to UV-Visible analysis. The goal is to determine the optimal deposition rates of ClAlPc and C70 on Pentacene to prepare high-quality thin films that enhance near-infrared light absorption. Experimental results indicate that ClAlPc and C70 exhibit the best absorption performance when deposited at a rate of 0.3 Å/s. In the second part, OPT for photodetection is fabricated using Pentacene as the active and light-absorbing layer, and ClAlPc and C70 as light-absorbing layers. These layers are deposited on a silicon substrate with a SiO2 gate insulator layer as the substrate. By varying the thickness of the ClAlPc and C70 , it is determined that the devices exhibit optimal responsivity at a thickness of ClAlPc 20 nm and C70 20 nm. aterial analyses including AFM (Atomic Force Microscopy), UV-Visible Spectrum, PL Spectrum (Photoluminescence Spectrum), and Exciton Spectrum are employed to provide supporting evidence.
    The first part of this experiment focuses on the low-temperature fabrication of high-performance, low-voltage organic thin-film transistors (OTFTs). High-K gate insulating layers (PVA/Al2O3) are grown on ITO substrates using spin-coating and atomic layer deposition (ALD). This process significantly enhances the device ID current and reduces the operating voltage. By adjusting the ALD temperature, the electrical characteristics of the device is further improved. Experimental results demonstrate that the device exhibit optimal electrical performance when the ALD temperature is set at 90°C. To further enhance the stability of the devices in terms of hysteresis and negative gate bias stress (NGBS), the conventional ITO gate electrode has been replaced with patterned ultra-thin Cu:Ag gate electrodes. This replacement aims to achieve a process of planarization for the device. The second part of the experiment involves the integration of the high-performance, low-voltage organic thin-film transistor (OTFT) fabricated in the first part with the optimized parameters of the light-absorbing layers (ClAlPc, C70). This integration aims to further enhance the optoelectronic characteristics of the devices, resulting in a high responsivity of 14.2 at the near-infrared wavelength of 780 nm.

    論文摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 XII 表目錄 XII 第一章 概論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究大綱 5 第二章 有機薄膜電晶體介紹 6 2.1 有機半導體介紹 6 2.1.1 有機半導體材料介紹 7 2.1.2 有機半導體Pentacene之特性介紹 10 2.2 有機半導體之傳輸機制 11 2.2.1 載子跳躍模型機制(Hopping Model) 12 2.2.2 陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release) 13 2.2.3 偏極子模型機制 (The Polaron Model) 13 2.3 閘極絕緣層介紹 15 2.3.1 閘極絕緣層材料 15 2.3.2 高介電常數(High-K)之介紹 16 2.4 有機薄膜電晶體結構 17 2.5 有機薄膜電晶體之操作模式 18 2.6 電性參數萃取方式 22 2.6.1 載子移動率(Mobility, μ) 22 2.6.2 臨界電壓(Threshold Voltage, Vth) 24 2.6.3 次臨界斜率(Subthreshold Swing, S.S.) 24 2.6.4 開關電流比(On/Off Current Ratio, Ion/Ioff) 25 2.7 有機光感測薄膜電晶體 26 2.8 光電流產生機制 27 2.9 有機光感測薄膜電晶體評價參數 28 2.9.1 響應度(Responsivity) 28 2.9.2 靈敏度(Sensitivity) 28 2.9.3 外部量子效率(External quantum efficiency, EQE) 28 2.9.4 偵測度(Dtectivity, D*) 29 2.10 實驗量測與材料分析設備介紹 30 2.10.1 半導體參數分析儀(Semiconductor Parameter Analyze) 30 2.10.2 原子力顯微鏡(Atomic Force Microscope, AFM) 30 2.10.3 原子層沉積系統(Atomic Layer Deposition, ALD) 31 2.10.4 接觸角量測儀(Contact Angle) 33 2.10.5 電感電容阻抗量測儀(LCR METER) 33 2.10.6 紫外光-可見光光譜儀(Ultraviolet/Visible Spectrophotometer, UV-VISIBLE) 34 2.10.7 光激發螢光頻譜(Photoluminescence, PL) 35 第三章 透過調變有機吸光層ClAlPc、C70參數製作高響應度光感測有機薄膜電晶體 36 3.1 簡介 36 3.1.1 文獻回顧 36 3.1.2 實驗動機 39 3.2 實驗流程 41 3.2.1 材料片製作流程 41 3.2.2 元件製作流程 44 3.3 有機吸光層於不同鍍率下UV-VISIBLE吸收特性 50 3.3.1 不同鍍率下之單層吸光層 (ClAlPc、C70) 50 3.3.2 不同鍍率下之三層吸光層 (Pentacene/ClAlPc/C70) 52 3.3.3 最佳鍍率下之吸光層分析 57 3.4 未搭配吸光層之光感測有機薄膜電晶體(光)電特性 59 3.5 光感測有機薄膜電晶體調變吸光層C70厚度之實驗與分析 64 3.5.1 不同C70厚度之元件電特性分析 64 3.5.2 不同C70厚度之元件光電特性分析 69 3.5.3 不同C70厚度之材料分析 73 3.6 光感測有機薄膜電晶體調變吸光層ClAlPc厚度之實驗與分析 76 3.6.1 不同ClAlPc厚度之元件電特性分析 76 3.6.2 不同ClAlPc厚度之元件光電特性分析 81 3.6.3 不同ClAlPc厚度之材料分析 85 第四章 低溫製作高性能低操作電壓之有機薄膜電晶體搭配最佳化有機吸光層以提高整體(光)電特性 92 4.1 簡介 92 4.1.1 文獻回顧 92 4.1.2 實驗動機 95 4.2 實驗流程 96 4.2.1 有機薄膜電晶體製作流程 96 4.2.2 光感測有機薄膜電晶體製作流程 102 4.3 低溫製作高性能低操作電壓有機薄膜電晶體之研究 103 4.3.1 PVA/Al2O3在不同ALD製程溫度下之元件實驗分析 103 4.3.2 PVA/Al2O3在不同圖案化閘極下之元件實驗分析 124 4.4 低溫製作高性能低操作電壓之高響應度光感測有機薄膜電晶體 138 4.4.1 超薄Cu:Ag電極搭配最佳化絕緣層和有機吸光層之電特性分析 138 4.4.2 超薄Cu:Ag電極搭配最佳化絕緣層和有機吸光層之光電特性分析 141 第五章 結論與未來展望 150 5.1 結論 150 5.2 未來展望 153 參考文獻 156

    [1] W. Qi, Q. Xu, Z. Yiqi, Y. Ding, J. Su, and W. Wang, “Highly stable, low-voltage operable high-mobility flexible organic thin-film transistors based on a trilayer gate dielectric”, Flexible and Printed Electronics, Vol. 7, pp. 014012, (2022).
    [2] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plastic electronics”, Applied Physics Letters, Vol, 81, p.562, (2002).
    [3] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner, “Electrode specific electropolymerization of ethylenedioxythiophene: Injection enhancement in organic transistors”, Appl. Phys. Lett., Vol. 87, pp. 113501 (2005).
    [4] B. J. Song, K. Hong, W. K. Kim, K. Kim, S. Kim, and J. L. Lee, “Effect of Oxygen Plasma Treatment on Crystal Growth Mode at Pentacene/Ni Interface in Organic Thin-Film Transistors”, J. Phys. Chem. B, Vol, 114, No. 46, pp. 14854, (2010).
    [5] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, “Enhancement of Electron Injection in Organic Light-Emitting Devices Using an Ag/Lif Cathode”, Journal of Applied Physics, Vol. 95, pp. 3828, (2004).
    [6] V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman, ”Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices”, Proceeding Of The IEEE, Vol. 93, pp. 1330, (2005).
    [7] Q. Ren, Q. Xu, H. Xia, X. Luo, F. Zhao, L. Sun, and Y. Li, “High performance photoresponsive field-effect transistorson MoS2/Pentacene heterojunction”, Organic Electronics, Vol. 51, pp. 142, (2017).
    [8] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plastic electronics”, Applied Physics Letters, Vol, 81, p.562, (2002).
    [9] T. Ahn, H. Jung, H. J. Suk, and M. H. Yi, “Effect of postfabrication thermal annealing on the electrical performance of Pentacene organic thin-film transistors”, Synthetic Metals, Vol. 159, pp. 1277, (2009).
    [10] A.Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film”, Applied Physics Letters, Vol. 49, pp. 1210, (1986).
    [11] A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene)”, Applied Physics Letters, Vol. 53. pp. 195, (1988).
    [12] J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen, “Lower Dimensional Systems and Molecular Devices”, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).
    [13] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility”, Applied Physics Letters, Vol. 69, pp. 4108, (1996).
    [14] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers”, Science, Vol. 280, pp. 1741, (1998).
    [15] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene /polysiloxane interface”, Journal of Applied Physics, Vol. 54, pp. 3255 , (1983).
    [16] J. H. Burroughes, C. A. Jones, and R. H. Friend, “New semiconductor device physics in polymer diodes and transistors”, Nature, Vol. 335, pp. 137, (1988).
    [17] H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility”, Applied Physics Letters, Vol. 63, pp. 1372, (1993).
    [18] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers”, Journal of the American Chemical Society, Vol. 115, pp. 8716, (1993).
    [19] B. Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, and F. Garnier, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films”, Chemistry of Materials, Vol. 6, pp. 1809, (1994).
    [20] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics”, Science, Vol. 268, pp. 270, (1995).
    [21] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, “Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-Di-hexyl-hexathienylene and Polymeric Insulators”, Synthetic Metals, Vol. 92, pp. 47, (1998).
    [22] H. E. Katz, L. Torsi, and A . Dodabalapur, “Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers”, Chemistry of Materials, Vol. 7, pp. 2235, (1995).
    [23] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, and F . Garnier, “Organic transistors using-octithiophene and, -dihexyl-octithiophene: Influence of oligomer length versus molecular ordering on mobility”, Advanced Material, Vol. 9, pp. 557, (1997).
    [24] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, and F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene”, Advanced Material, Vol. 9, pp. 389, (1997).
    [25] J. H. Schön, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of Pentacene field-effect transistors”, Organic Electronics, Vol. 1, pp. 57, (2000).
    [26] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of Pentacene for organic field effect transistor applications”, Journal of Applied Physics, Vol. 80, pp. 2501, (1996).
    [27] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors”, 54th Annual Device Research Conference Digest, New York, pp. 80, (1996).
    [28] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors”, Synthetic Metals, Vol. 51, pp. 419, (1992).
    [29] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, “C60 thin film transistors”, Applied Physics Letter, Vol. 67, pp. 121, (1995).
    [30] J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512, (1993).
    [31] J. Guo, D. Liu, W. Li, B. Yu, H. Tian, F. Zhu, and D. Yan, “High-performance 2,9-DPh-DNTT organic thin-film transistor by weak epitaxy growth method”, Organic Electronics, Vol. 93, pp.106170, (2021).
    [32] T. Jiang, W. Malone, Y. Tong, D. Dragoe, A. Bendounan, A. Kara, and Vladimir A. Esaulov, “Thiophene Derivatives on Gold and Molecular Dissociation Processes”, Journal of Physical Chemistry C, Vol. 121, pp. 27923-27935, (2017).
    [33] G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors”, Chemical Physics Letters, Vol. 167, pp. 503, (1990).
    [34] Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors”, Journal of the American Chemical Society, Vol. 120, pp. 207, (1998).
    [35] J. M. Shaw, and P. F. Seidle, “Organic Electronic: Introduction”, IBM Journal of Research and Development, Vol.45, pp. 3, (2001).
    [36] K. Zhou, H. Dong, H. l. Zhang, and W. Hu, “High performance n-type and ambipolar small organic semiconductors for organic thin film transistors”, Phys. Chem. Chem. Phys, Vol. 16, pp. 22448, (2014).
    [37] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon”, Physical Review Letters, Vol. 103, pp. 51, (1956).
    [38] N. F. Mott, “On the Transition to Metallic Conduction in Semiconductors”, Canadian Journal of Physics. Vol. 34, p. 1356 (1956).
    [39] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors”, Masters Thesis, University of Cagliari, (2009).
    [40] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films, “Physical Review Letters”, Vol. 25, p. 509 (1970).
    [41] C. W. Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors”, Masters Thesis, National Cheng Kung University, Tainan, Taiwan (2006).
    [42] Y. X. Ma, W. M. Tang, and P. T. Lai, IEEE Electron Device Letters, vol. 39, no. 10, p.1516 (2018).
    [43] L. Guo, X. Zhu, S. Sun, C. Cong, Q. Zhou, X. Sun, and Y. Liu, Organic Electronics, vol. 69, p. 308 (2019).
    [44] R Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O in electrical characteristics of Pentacene thin film transistors”, Thin Solid Films, Vol. 464-465, pp. 437, (2004).
    [45] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface”, Applied Physics Letter, Vol. 92, pp. 093309, (2008).
    [46] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric”, Organic Electronics, Vol. 7, pp. 271, (2006).
    [47] Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letter, Vol. 80, pp. 151, (2002).
    [48] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors”, IEEE Transaction0s on electron devices, Vol. 48, No. 6, (2001).
    [49] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors”, Applied Physics Letters, Vol. 84, pp. 296, (2004).
    [50] A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-effect transistor made from solution-procceed organic semiconductors”, Synthetic Metals, Vol. 88, pp. 37, (1997).
    [51] A. Pierre, A. Gaikwad, and A. C. Arias, “Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors”, Nature Photonics, Vol. 11, pp. 193, (2017).
    [52] N. K. Za’aba, and D. M. Taylor, “Photo-induced Effects in Organic Thin Film Transistors Based on Dinaphtho [2,3- b:2',3'-f] Thieno[3,2-b'] Thiophene (DNTT)”, Organic Electronics, Vol. 65, pp. 39, (2019).
    [53] C. W. Tang, “Two layer organic photovoltaic cell”, Applied Physics Letters, Vol. 48, pp. 183, (1986).
    [54] Q. Dai, K. Xu, Y. Peng, W. Lv, Z. Zhao, L. Sun, Y. Wang, Q. Li, H. Zhu, Z. Zhou, and C. Gu, “Towards high performance visible-blind narrowband near-infrared photodetectors with integrated perovskite light filter”, Infrared Phys Technol, Vol. 108, pp. 103358, (2020).
    [55] J. H. Kim, A. Liess, M. Stolte, A. M. Krause, V. Stepanenko, C. Zhong, D. Bialas, F. Spano, and F. Würthner, “An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine DyeAdv Mater”, Vol. 33, pp. 2100582, (2021).
    [56] C. Lee, H. Kim, and Y. Kim, “Short-Wave Infrared-Sensing Organic Phototransistors with a Triarylamine-Based Polymer Doped with a Lewis Acid-Type Small Molecule”, ACS Appl Mater Interfaces, Vol. 13, pp. 19064, (2021).
    [57] Z. Wu, Y. Lee, and C. Lee, “Introduction of Computer AidedTestAnalysisProgram for Civil Engineering”, Journal of Building Technology, Vol. 2, Issue 1 (2020).
    [58] L. Xiaodong, L. Yiwei, L. Yingjie, W. Jiazun, and Z. Yonghao, “Recent advances in organic near-infrared photodiodes”, Journal of Materials Chemistry C, Vol. 6, pp. 3499, (2018).
    [59] M. W. Alam, “Current progress in electrode/pentacene interfaces of pentacene-based organic thin films transistors: A review”, Materials Express, Vol. 9, pp. 691, (2019).
    [60] Y. Y. Noh, and D. Y. Kim, “Organic phototransistor based on pentacene as an efficient red light sensor”, Solid-State Electronics, Vol. 51, pp. 1052, (2007).
    [61] A. K. Pandey, P. E. Shaw, D. W. Samuel, and J. M. Nunzi, “Effect of metal cathode reflectance on the exciton-dissociation efficiency in heterojunction organic solar cells”, Applied Physics Letters, Vol. 94, pp. 103303, (2009).
    [62] J. Kim, and S. Yim, “Influence of surface morphology evolution of SubPc layers on the performance of SubPc/C60 organic photovoltaic cells”, Applied Physics Letters, Vol. 99, pp. 193303, (2011).
    [63] M. Wang, Y. Z. Li, H. C. Chen, C. W. Liu, Y. S. Chen, Y. C. Lo, C. S. Tsao, Y. C. Huang, S. W. Liu, K. T. Wong, and B. Hu, “Unveiling the underlying mechanism of record-high efficiency organic near-infrared photodetector harnessing a single-component photoactive layer”, Mater. Horiz.2020, Vol. 7, pp. 1171, (2020).
    [64] S. W. Liu, C. C. Lee, C. H. Yuan, W. C. Su, S. Y. Lin, W. C. Chang, B. Y. Huang, C. F. Lin, Y. Z. Lee, T. H. Su, and K. T. Chen, “Transparent Organic Upconversion Devices for Near-Infrared Sensing”, Adv. Mater, Vol. 27, pp. 1217, (2015).
    [65] J. W. Arbogast, and C. S. Foote, “Photophysical properties of C70”, J. Am. Chem. Soc., Vol. 113, pp. 8886, (1991).
    [66] K. Harada, T. Edura, and C. Adachi, “Nanocrystal Growth and Improved Performance of Small Molecule Bulk HeterojunctionSolar Cells Composed of a Blend of Chloroaluminum Phthalocyanine and C70”, Appl. Phys. Express, Vol. 3, pp. 121602, (2010).
    [67] L. Benatto, C. F. N. Marchiori, T. Talka, M. Aramini, N. A. D. Yamamoto, S. Huotari, L. S. Roman, and M. Koehler, “Comparing C60 and C70 as acceptor in organic solar cells: Influence of the electronic structure and aggregation size on the photovoltaic characteristics”, Thin Solid Films, Vol. 697, pp. 137827, (2020).
    [68] Lee C, Kim H, and Kim Y, “Short-Wave Infrared-Sensing Organic Phototransistors with a Triarylamine-Based Polymer Doped with a Lewis Acid-Type Small Molecule”, ACS Appl Mater Interfaces, Vol. 13, pp. 19064, (2021).
    [69] S. K. Samanta, I. Song, J. H. Yoo, and J. H. Oh, “Organic n Channel Transistors Based on [1] Benzothieno [3,2 b] benzothiophene − Rylene Diimide Donor − Acceptor Conjugated Polymers”, ACS Applied Materials and Interfaces, Vol. 10, pp. 32444, (2018).
    [70] T. H. Debesay, and S. S. Sun, “Phototransistors Based on A Lightly Doped P3HT”, MRS Advances, Vol. 5, pp. 1975, (2020).
    [71] B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G Gonga, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surface roughness of the active layer in organic phototransistors”, Synthetic Metals, Vol. 193, pp. 35, (2014).
    [72] Z. E. Jouad, M. Morsli, G. Louarn, L. Cattin, M. Addou, and J.C. Bernède, “Improving the efficiency of subphthalocyanine based planar organic solar cells through the use of MoO3/CuI double anode buffer layer”, Solar Energy Materials & Solar Cells, Vol. 141, pp. 429, (2015).
    [73] S. Li, D. Li, W. Qi, M. Xu, and W. Wang, “Low-Voltage Operated Organic Thin-Film Transistors with Mobility Exceeding 10 cm²/vs”, IEEE Electron Device Letters, Vol. 42, pp. 398, (2021).
    [74] M. He, J. Han, X. Han, J. Gou, M. Yang, Z. Wu, Y. Jiang, and J. Wang, “Organic thin film thickness-dependent photocurrents polarity in graphene heterojunction phototransistor”, Carbon, Vol. 178, pp. 506, (2021).
    [75] Q. Dai, G. Hu, W. Lv, S. Xu, L. Sun, G. F. Schneider, and L. Jiang, “Near-Infrared Phototransistor Based on Graphene/C60/PbPc Heterojunction with Tunable Bidirectional Photoresponse and Yingquan PengNear-Infrared Phototransistor Based on Graphene/C60/PbPc Heterojunction with Tunable Bidirectional”, Adv. Mater. Interfaces, Vol. 9, pp. 2200116, (2022).
    [76] Q. Dai, K. Xu, Y. Peng, W. Lv, Z. Zhao, L. Sun, Y. Wang, Q. Li, H. Zhu, Z. Zhou, and C. Gu, “Towards high performance visible-blind narrowband near-infrared photodetectors with integrated perovskite light filter”, Infrared Phys. Technol., Vol. 108, pp. 103358, (2020).
    [77] Z. Zhou, G. Liao, X. Song, Q. Dai, L. Sun, Y. Peng, and P. Wang, “Significant Detectivity Enhancement of Broad Spectral Organic–Inorganic Hybrid Photodiodes by C60 Film as Hole-Blocking Layer”, Nanoscale Res. Lett., Vol. 17, pp. 19, (2022).
    [78] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, and Z. Bao, “Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method,” Nature Commun., Vol. 5, pp. 3005, (2014).
    [79] H. Sirringhaus, “25th anniversary article: Organic field-effect transistors:The path beyond amorphous silicon”, Adv. Mater., Vol. 26, pp. 1319, (2014).
    [80] Y. Hu, L. Wang, Q. Qi, D. Li, and C. Jiang, “Charge Transport Model Based on Single-Layered Grains and Grain Boundaries for Polycrystalline Pentacene Thin-Film Transistors”, J. Phys. Chem. C, Vol. 115, pp. 23568, (2011).
    [81] Y. G. Ha, K. Everaerts, M. C. Hersam, and T. J. Marks, “Hybrid Gate Dielectric Materials for Unconventional Electronic Circuitry”, Acc. Chem.Res., Vol. 47, pp. 1019, (2014).
    [82] A.A. Virkar, S. Mannsfeld, Z. Bao, and N. Stingelin, “Organic Semiconductor Growth and Morphology Considerations for Organic Thin-Film Transistors”, Adv. Mater., Vol. 22, pp. 3857, (2010).
    [83] Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, and Z. Bao, “Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors”, J. Amer. Chem. Soc., Vol. 131, pp. 9396, (2009).
    [84] S. Z. Weng, W. S. Hu, C. H. Kuo, Y. T. Tao, L. J. Fan, and Y. W. Yang,“Anisotropic field-effect mobility of pentacene thin-film transistor: Effect of rubbed self-assembled monolayer,” Appl. Phys. Lett., Vol. 89, pp.172103, (2006).
    [85] S. Li, D. Li, W. Qi, M. Xu, and Wei Wang, “Low-Voltage Operated Organic Thin-Film Transistors with Mobility Exceeding 10 cm²/vs”, IEEE Electron Device Letters, Vol. 42, pp. 398, (2021).
    [86] X. Zhuang, X. Wang, H. Fan, and J. Yu, “High performance N-type organic thin-film transistor based on biocompatible silk fibroin: poly(vinyl alcohol)-blended dielectric layer”, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 10843, (2018).
    [87] Y. Yousf1, A. Jouili1, S. Mansouri, L. E. Mir, A. A. Ghamdi, A. G. A. Sehemi, and F. Yakuphanoglu, “Effect of the Active Layer Thickness of Pentacene Thin Film Transistor; Illumination Efect”, Journal of Electronic Materials, Vol. 50, pp. 5701, (2021).
    [88] S. H. Jin, J. S. Yu, C. A. Lee, J. W. Kim, Byung-Gook Park, and J. D. Lee, “Pentacene OTFTs with PVA Gate Insulators on a Flexible Substrate”, Journal of the Korean Physical Society, Vol. 44, pp. 181, (2004).
    [89] T. D. Tsai, J. W. Chang, T. C. Wen, and T. F. Guo, “Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements”, Adv. Funct. Mater., Vol. 23, pp. 4206, (2013).
    [90] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “Effect of hydroxyl groups in polymeric dielectrics on organic transistor performance”, Appl. Phys. Lett., Vol. 88, pp. 162109, (2006).
    [91] Z. Tao, X. Liu, W. Lei, and J. Chen, “High sensitive solar blind phototransistor based on ZnO nanorods/IGZO heterostructure annealed by laser”, Materials Letters, Vol. 228, pp. 451, (2018).
    [92] H. Dong, X. Fu, J. Liu, Z. Wang, and W. Hu, “25th Anniversary Article: Key Points for High-Mobility Organic Field-Effect Transistors”, Advanced Materials, Vol. 25, pp. 6158, (2013).
    [93] T. Han, L. Liu, M. Shou, Z. Xie, L. Ying, C. Jiang, X. Huang, H. Li, and Y. Ma, “Lateral Polymer Photodetectors Using Silver Nanoparticles Promoted PffBT4T-2OD:PC61BM Composite”, ACS Photonics, Vol. 5, pp. 4650, (2018).
    [94] L. Vijayan, K. S. Kumar, and K. B. Jinesh, “Influence of intensity on copper phthalocyanine based organic phototransistors”, Materials Today: Proceedings, Vol. 47, pp. 1099, (2021).
    [95] B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/ drain electrodes”, Applied Physics Letters, Vol. 101, pp. 163301, (2012).
    [96] S. Han, X. Yang, X. Zhuang, J. Yu, and L. Li, “Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer”, Materials, Vol. 9, pp. 545, (2016).

    無法下載圖示 全文公開日期 2028/08/23 (校內網路)
    全文公開日期 2028/08/23 (校外網路)
    全文公開日期 2028/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE