簡易檢索 / 詳目顯示

研究生: 張益華
Yi-Hua Chang
論文名稱: 250–1050 nm 紫外光至近紅外波段之微型高光譜儀系統優化設計
Optimal Design of Miniature Hyperspectrometer System from Ultraviolet to Near Infrared Light Band for 250 to 1050 nm
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 李敏凡
Min-Fan Lee
沈志霖
Chin-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: 紫外光至近紅外高光譜儀光譜解析度半高全寬聚焦縱深
外文關鍵詞: UV-Vis-NIR, Hyperspectrometer, Spectral resolution, Full width at half maximum, Depth of focus
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究欲設計波長250-1050 nm Offner形式的紫外光-可見光-近紅外波段微型光譜影像儀,設計前須選定光源發散角、光譜成像面大小、凹面鏡曲率、光柵條紋間距、繞射階數,以上述規格進行Offner系統參數計算,並定義解像方向為X方向、解光譜方向為Y方向,光線行進方向為Z方向。
    該光學系統的體積大幅縮小,使光譜儀增加攜帶的方便性。其中系統設計之光學元件皆採用市售元件,增加元件取得方便性,並降低光譜儀的製作成本。
    該光學系統模型之建立採用光學/成像系統設計分析軟體 CODE V進行建模,為降低該光學系統製造成本,於建模時藉由調變光柵每單位長度內的刻痕,使光學系統需使用之反射鏡符合市售元件規格,並於確認各光學元件後進行系統優化,使該光學系統可達最佳空間解析度,利用優化將偵測器各波段成像斑點進入繞射極限內,在此研究利用450 nm 作為優化波段。
    為了能精確分析波段的成像品質,將波段分波長250 nm、450 nm、650 nm、850 nm、1050 nm各別分析。
    此光學系統最終確定之凹球面鏡曲率半徑為50 mm,光柵間距為4.1 μm,整體Offner系統大小為 70 mm × 90 mm × 70 mm,點光源光譜總解析度為0.68–2.10 nm,狹縫光源光譜總解析度為3.12–3.60 nm。
    而後利用光線追跡軟體TracePro模擬真實情況,並驗證建模軟體CODE V的結果正確性。其中,點光源搭配底片規格之最佳影像解析度為1.94–1.98 μm,光譜總解析度為0.44–1.70 nm;狹縫光源搭配偵測器規格之最佳影像解析度為18.75–19.04 μm,光譜總解析度為3.16–3.49 nm,皆與CODE V設計結果相符,偵測器聚焦縱深約為0.23 mm。


    Abstract
    In this study, design an ultraviolet-visible-near infrared multiple miniature Offner spectrometer with wavelength of 250-1050 nm. Before designing, the FOV of the light source, the size of the spectral image, the Radius of the concave mirror, the grating pitch, and the diffraction order must be determined in the above manner. Perform Offner system parameter calculation, and define the spatial direction as the X direction, the spectral direction as the Y direction, and the light travel direction as the Z direction.
    Use the optical simulation software Code V to create the model. By adjusting the grating pitch, a hyperspectrometer imager that meets the design specifications can be created. The radius of curvature of the spherical mirror is 50 mm, the grating pitch is 4.10 μm, and the size of the Offner system is about 70 mm × 90 mm × 70 mm.
    Trace Pro is used to trace the light for simulation to verify the Code V results and analyze them in the most realistic imaging situation, total spectral resolution of 0.68-2.10 nm and an image resolution of 4.08-14.30 μm.
    The real imaging situation with slit source and detector specifications, has a total spectral resolution of 3.16-3.49 nm and an image resolution of 18.75-19.04 μm. It is almost the same as the total resolution of the CODE V spectrum with the slits source.
    Finally, for the best efficiency of the concave mirror, the blaze wavelength is used for compensation, and the short side of the mechanical processing is too short to be processed, so the left angle of the blaze angle is 6.70 ° and the blaze wavelength is 800 nm.

    目錄 致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 序論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究流程 3 1.4 本文架構 4 第二章 相關原理探討及文獻研究 5 2.1 Offner系統型光譜影像儀 5 2.2 幾何光學 6 2.3 艾瑞盤 (Airy Disk) 7 2.4 繞射 (Diffraction) 8 2.5 繞射極限 (Diffraction limit) 9 2.6 光柵 (Grating) 9 2.6.1 光柵方程式 10 2.6.2 光柵色散 11 2.6.3光柵分辨率 11 2.6.4 光柵應用相關理論 12 2.7 數值孔徑 (Numerical Aperture) 14 2.8 半高全寬解析度 (Full Width at Half Maximum, FWHM) 15 2.9 聚焦縱深 (DoF) 17 2.10 調制轉移函數 (MTF) 18 第三章 Offner型光譜儀建模與參數推算 20 3.1 Offner系統光學元件挑選 20 3.2 Offner系統參數設計 22 3.3 Offner系統模型建立 26 3.4 閃耀光柵分析 29 第四章 參數優化與系統能力評估 37 4.1 Code V系統參數優化 37 4.1.1 市售球面鏡規格系統優化 37 4.1.2 系統總解析度分析 42 4.2 TracePro 光線追跡模擬 48 4.2.1 點光源搭配底片規格 49 4.2.2 狹縫光源搭配偵測器規格 61 第五章 結論 73 參考文獻 74

    參考文獻
    [1] 徐百輝,「大地的辨識密碼-高光譜影像」,科學發展,第四百一十六期,第13-19頁 (2007)。
    [2] W. Liu., “Design and analysis of structure of compact Offner spectral imaging system,” Chinese Optics, vol. 3, no. 2, pp.157-163, 2010.
    [3] L. Mertz, “Concentric spectrographs,” Applied Optics, vol. 16, no. 12, pp.3122-3124, 1977, DOI. 10.1364/AO.16.003122.
    [4] S. H. Kim, H. J. Kong, H. Ku; J. H. Lee, “Analytical design of a hyper-spectral imaging spectrometer utilizing a convex grating,” SPIE, vol. 8515, no. 17, 2012, DOI. 10.1117/12.929485.
    [5] G. B. Airy, "On the Diffraction of an Object-glass with Circular Aperture", Transactions of the Cambridge Philosophical Society, Vol. 5, pp. 283-291, 1835.
    [6] G. Bekefi, A. H. Barrett, “Electromagnetic vibrations, waves, and radiation 2nd,” illustrated. MIT Press, USA, 1977, pp. 559-560.
    [7] 徐郁茹,「可見光至近紅外波段微型高光譜影像儀之設計與成像分析」,碩士論文,國立台灣科技大學,第 6-8 頁 (2018)。
    [8] Xesús Prieto-Blanco, Carlos Montero-Orille, Héctor González-Núñez, et al., “Imaging with classical spherical diffraction grating: the quadrature configuration,” Journal of the Optical Society of America A, vol. 26, pp. 2400-2409, 2009, DOI. 10.1364/JOSAA.26.002400.
    [9] H. Yinlei, Y. Jianyi, J. Xiaoqing, Z. Wei, Z. Jianying, Z. Haifeng, et al., “Analysis on Curved Waveguide Grating (CWG) with Rowland circle construction,” Optical Fiber Communication and Optoelectronics Conference, pp. 339-341, 2007, DOI. 10.1109/AOE.2007.4410800.
    [10] G. D. Boreman, “Modulation Transfer Function in Optical and Electro-optical Systems,” SPIE-The International Society for Optical Engineering, 2001, pp. 20-25.
    [11] X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R.de la Fuente, “Analytical design of an Offner imaging spectrometer,” Optics Express, Vol. 14, No. 20, pp. 9156-9168, 2006, DOI. 10.1364/OE.14.009156.
    [12] M. Borengasser, W. S. Hungate , R. Watkins, “Hyperspectral Remote Sensing: Principles and Applications,” CRC Press, Boca Raton, 2007, pp. 18-23.
    [13] P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, Vol. 3, pp. 286-310, 2013, DOI. 10.5201/IPOL.2013.87.

    無法下載圖示 全文公開日期 2025/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE