簡易檢索 / 詳目顯示

研究生: 徐郁茹
Yu-Ju Hsu
論文名稱: 可見光至近紅外波段微型高光譜影像儀之設計與成像分析
Design and Imaging Analysis of a Micro-Hyperspectrometer in Visible and Near Infrared Band
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
Jhih-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 103
中文關鍵詞: 可見光至近紅外高光譜儀光譜解析度半高全寬聚焦縱深調制轉移函數
外文關鍵詞: VNIR, Hyperspectrometer, Spectral resolution, Full width at half maximum, Depth of focus, Modulation transfer function
相關次數: 點閱:804下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究欲設計波段400-1000 nm Offner形式的微型高光譜影像儀,改善從前儀器體積過大,不便攜出實驗室外使用之情形。搭配選用的光學元件,進行設計與成像分析,亦可降低製作成本。
    利用光學模擬軟體Code V建立模型,藉由調變光柵間距,建立出符合設計規範的高光譜影像儀,其球面鏡曲率半徑為30 mm,光柵間距為3.4 μm,offner系統體積大小約為35 mm × 70 mm × 35 mm。
    再利用光跡追蹤軟體Trace Pro進行模擬,驗證Code V設計結果並加以分析最符合真實成像的情形。
    Code V初步分析的結果,與Trace Pro模擬點光源搭配底片規格的結果近乎相同,光譜總解析度在0.6-2.1 nm之間;影像解析度在1.1-9.6 μm之間。以MTF來表示影像解析, MTF=0.3時對應到的空間頻率為46.61-73.62cycle/mm,一個pitch為0.95-1.5μm,影像解析度比一個pixel的比值為1.15-1.3。
    真實成像情形,即狹縫光源搭配偵測器規格,光譜總解析度在3.8-4.3 nm之間,影像解析度在15.8-18.4 μm之間。以MTF來表示影像解析, MTF=0.3時對應到的空間頻率在108.29-111.21 cycle/mm,一個pitch為12.66-13μm,影像解析度比一個pixel的比值為1.25,符合攜帶方便且擁有超高解析度之設計結果。


    The purpose of this study is to design a miniature hyperspectral imager with a band of 400-1000 nm and Offner system. This will improve the situation in which the former instrument is too large to be used outside the laboratory. With the selected optical components, design and imaging analysis can also reduce production costs.
    A model is created using the optical simulation software Code V. By adjusting the grating pitch, a hyperspectral imager conforming to the design specification is created. The curvature radius of the spherical mirror is 30 mm, the grating pitch is 3.4 μm, and the offner system size is approximately 35 mm × 70 mm × 35 mm.
    Trace Pro is used to trace the light for simulation to verify the Code V results and analyze them in the most realistic imaging situation.
    The results of the Code V preliminary analysis are almost the same as the Trace Pro with point source and a film specification with a total spectral resolution of 0.6-2.1 nm and an image resolution of 1.1-9.6 μm.
    The real imaging situation with slit source and detector specifications, has a total spectral resolution of 3.8-4.3 nm and an image resolution of 15.8-18.4 μm. The image analysis expressed by MTF, the spatial frequency corresponding to MTF=0.3 in the horizontal and vertical directions is 93.35-111.49 cycle/mm, and the pitch is 12.63-14.77 μm. The ratio of image resolution to one pixel is 1.25. The overall results ensure that reduced size of offner didn't affect the high quality resolution of image.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 X 第一章 序論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究流程 2 1.4 本文架構 3 第二章 原理探討與文獻研究 4 2.1 幾何光學 4 2.2 繞射(Diffraction) 4 2.3 繞射極限(Diffraction Limit) 4 2.4 艾瑞盤(Airy Disk) 5 2.5 光柵(Grating) 6 2.5.1 光柵方程式 6 2.5.2 光柵色散 7 2.5.3 光柵色辨力 8 2.5.4 光柵應用相關理論 9 2.6 半高全寬解析度(FWHM Resolution) 11 2.7 聚焦縱深(Depth of Focus, DoF) 12 2.8 漸暈現象(Vignetting) 13 2.9 調制轉移函數 (Modulation Transfer Function, MTF) 13 第三章 Offner光譜儀參數設計及建模 16 3.1 Offner系統與光學組件選擇 16 3.2 系統參數設計 18 3.3 系統模型建立 22 第四章 Offner模型光柵間距調變結果分析 27 4.1 系統大小分析 27 4.2 閃耀光柵製程分析 28 4.3 漸暈現象分析 34 4.4 成像與解析度分析 37 第五章 光跡模擬 48 5.1 點光源搭配底片規格分析 51 5.1.1 點光源搭配底片規格影像解析度分析 51 5.1.2 點光源搭配底片規格聚焦縱深分析 56 5.1.3 點光源搭配底片規格光譜總解析度分析 58 5.1.4 點光源搭配底片規格影像解析度MTF分析 63 5.2 狹縫光源搭配偵測器規格分析 67 5.2.1 狹縫光源搭配偵測器源規格影像解析度分析 67 5.2.2 狹縫光源搭配偵測器規格聚焦縱深分析 71 5.2.3 狹縫光源搭配偵測器規格光譜總解析度分析 73 5.2.4 狹縫光源搭配偵測器規格影像解析度MTF分析 78 第六章 前級光學系統應用規格 82 第七章 結論 86 參考文獻 88

    [1] 徐百輝,「大地的辨識密碼-高光譜影像」,科學發展,第四百一十六期,第13-19頁 (2007)。
    [2] 李龍正,「高光譜影像儀發展及影像市場前景」,科儀新知,第二十六卷,第二期,第50-57頁 (2004)。
    [3] George BekefiE, Alan H. Barrett, Electromagnetic Vibrations, Waves, and Radiation, MIT Press(1982)
    [4] H. Noda, T. Namioka, and M. Seya, “Geometrical theory of the grating,” Journal of the Optical Society of America, pp. 1031-1036 (1974).
    [5] C. Hutley, Diffraction gratings, Academic Press, New York (1982).
    [6] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 460-464 (2002)
    [7] Xesús Prieto-Blanco, Carlos Montero-Orille, Héctor González-Núñez, et al., “Imaging with classical spherical diffraction grating: the quadrature configuration,” Journal of the Optical Society of America, pp. 2400-2409 (2009).
    [8] H. Yinlei, Y. Jianyi, J. Xiaoqing, Z. Wei, Z. Jianying, Z. Haifeng, et al., “Analysis on Curved Waveguide Grating (CWG) with Rowland circle construction,” Optical Fiber Communication and Optoelectronics Conference, Asia, pp. 339-341 (2007).
    [9] G. F. Marshall, “Laser Beam Scanning,” Scanning, Vol. 9, pp. 289-301 (1985).
    [10] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Interscience, New Jersey (2013).
    [11] G. Boreman, Modulation transfer funcion in optical and electro-optical systems, SPIE-The International Society for Optical Engineering, Washington (2001).
    [12] M. Türkmenoğlu, “On-orbit Modulation Transfer Function Estimation For RASAT,” Recent Advances in Space Technologies 6th International Conference, Istanbul, Turkey, pp. 181-183 (2013).
    [13] D. Leger, J. Duffaut and F. Robinet, “MTF Measurement using Spotlight,” Geoscience and Remote Sensing Symposium, Pasadena, USA, pp. 2010-2012 (1994).
    [14] T. Khuon, R. Rand, J. Greer, and E. Truslow, “Distributed Adaptive Spectral and Spatial Sensor Fusion for Super-resolution Classification,” Applied Imagery Patterm Recongnition WorkShop, Washington, USA, pp. 1-8 (2012).
    [15] Mertz L, “Concentric spectrographs,” Applied Optics, pp.3122-3124 (1977).
    [16] Seo Hyun Kim, Hong Jin Kong, Hana Ku; Jun Ho Lee, “Analytical design of a hyper-spectral imaging spectrometer utilizing a convex grating,” SPIE (2012).
    [17] X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R.de la Fuente, “Analytical design of an Offner imaging spectrometer,” Optics Express, Vol. 14, No. 20, pp. 9156-9168 (2006).
    [18] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 471-474 (2002).
    [19] J. H. Wen, L. P. Jia, and P. Ling, “Study On Making High Side-Mode Suppression Ratio Fiber Bragg Grating,” International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, pp. 4014-4016 (2011).
    [20] M. Braun, W. W. Roeck, G. D. Gillan, and J. G. Pearce, “RMS Focal Spot : The REAL Focal Spot,” IEEE Transactions on Nuclear Science, Vol. 27, No. 3, pp. 1057-1063 (1980).
    [21] M. Borengasser, W. S. Hungate and R. Watkins, Hyperspectral Remote Sensing: Principles and Applications, CRC Press, Boca Raton, pp. 18-23 (2002).
    [22] P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, Vol. 3, pp. 286-310 (2013).
    [23] R. Serway, and J. Jewett, Physics for Scientists and Engineers with Modern Physics, Cengage Learning, Boston, USA. pp. 1091-1095 (2013).
    [24] T. Zeniya, H. Watabe, H. Kudo, Y. Hirano, K. Minato, and H. Iida, “Combination of a High Resolution Detector with Small FOV and a Low Resolution Detector with Large FOV for High Resolution and Quantitative SPECT,” IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, pp. 5229-5321 (2008).

    無法下載圖示 全文公開日期 2023/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE