簡易檢索 / 詳目顯示

研究生: 盧韋穎
Wei-Ying Lu
論文名稱: 搭配高效率有機吸光層開發高響應度近紅外光光感測金屬氧化物薄膜電晶體之研究
Investigation of the Near-Infrared Photo Oxide Thin-Film-Transistors with High Responsivity by Using High-efficiency Organic Light Absorption Layer
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
王錫九
Shea-Jue Wang
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 132
中文關鍵詞: 光電晶體響應度進紅外光
外文關鍵詞: Phototransistor, Responsivity, Near-infrared
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬氧化物薄膜電晶體具有高載子遷移率、大面積下有良好的均勻性、低溫製程及高光穿透度等優點,因此被廣泛的應用在顯示器領域,除此之外,金屬氧化物薄膜電晶體也可以作為光感測的用途,其具有比光二極體更高的光響應電流,故不需要另外搭配CMOS放大電路,得以減少所占空間。本論文使用氧化銦鋅錫(IZTO)作為薄膜電晶體之主動層,搭配高效率酞菁鉛(PbPc)吸光層,PbPc在近紅外光波段有兩個吸收峰值,與PbPc之晶相有關,峰值分別位於740 nm與900 nm,並且具有高的吸收效率。
    首先,本論文透過在PbPc底下,沉積氯化硼亞酞菁(SubPc)模板層(Templating Layer),並找出SubPc與PbPc兩材料間之最佳鍍率,初步改變PbPc之晶相,再藉由調整SubPc厚度,得到在900 nm左右之近紅外光範圍,有最好的吸收效率、最高的光響應,以及最快速的響應與回復時間。接著,本論文利用後退火處理,除了可以改善元件之電特性,減少漏電流與缺陷問題,同時也能夠增加PbPc之三斜晶相,增強在900 nm左右近紅外光之吸收效率。最後,透過調變退火溫度與時間,找出最佳退火條件,得以有效改善光感測薄膜電晶體在近紅外光波段之光響應。


    Metal oxide thin-film transistors have the advantages of high carrier mobility, good uniformity, low-temperature fabrication, and high optical transparency, so they are widely used in the field of displays. In addition, metal oxide thin-film transistors can also be used for light sensing. The photocurrent in transistors is higher than in photodiodes, so there is no need for additional CMOS amplifier circuits. In this work, indium zinc tin oxide (IZTO) is used as the active layer of the thin-film transistor, and high-efficiency lead phthalocyanine (PbPc) is used as the light absorption layer. PbPc has two absorption peaks in the near-infrared region, which are related to the crystalline phase of PbPc. The two peaks are located at 740 nm and 900 nm, respectively, and PbPc has high absorption efficiency in the near-infrared region.
    First, in this work, depositing subphthalocyanine (SubPc) as a templating layer under PbPc, and finding the optimum deposition rate of SubPc and PbPc to change the crystalline phase of PbPc. Then adjusting the thickness of SubPc, the near-infrared region around 900 nm is obtained, which has the best absorption efficiency, the highest responsivity, and the fastest rise/fall time. Next, the post-annealing treatment can not only improve the device’s electrical characteristics and reduce leakage current but also increase the triclinic phase of PbPc and enhance the absorption efficiency of near-infrared around 900 nm. Finally, the optimal annealing conditions can be found by adjusting the annealing temperature and time, which can effectively improve the responsivity in the near-infrared region of the phototransistor.

    論文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 論文大綱 5 第二章 材料介紹與理論基礎 6 2.1 金屬氧化物半導體材料介紹 6 2.1.1 金屬氧化物半導體材料概述 6 2.1.2 非晶金屬氧化物半導體傳輸機制 7 2.1.3 非晶氧化銦鋅錫材料特性與電性影響 9 2.2 金屬氧化物薄膜電晶體結構 13 2.3 金屬氧化物薄膜電晶體操作模式 15 2.4 光感測薄膜電晶體之操作機制 19 2.5 金屬氧化物薄膜電晶體之參數萃取方式 20 2.5.1 I-V 特性量測 21 2.5.2 臨界電壓(Threshold Voltage, VTH) 21 2.5.3 次臨界斜率(Subthreshold Swing, S.S) 22 2.5.4 載子遷移率(Mobility, μ) 24 2.5.5 開關電流比(On/Off Current Ratio, Ion/Ioff) 26 2.6 金屬氧化物光感測薄膜電晶體之參數萃取方式 27 2.6.1 響應度(Responsivity)、靈敏度(Sensitivity) 27 2.6.2 偵測度(Detectivity, D*) 27 2.6.3 外部量子效率(External quantum efficiency, EQE) 28 2.6.4 Id – Time 29 2.7 薄膜材料特性分析 29 2.7.1 紫外光/可見光光譜儀(Ultraviolet/Visible Spectrophotometer, UV/VIS) 29 2.7.2 光激發螢光頻譜(photoluminescence, PL) 32 2.7.3 原子力顯微鏡(Atomic Force Microscope, AFM) 32 2.7.4 X光繞射儀(X-ray Diffractometer, XRD) 33 2.7.5 X射線光電子能譜儀( X-ray Photoelectron Spectroscopy, XPS) 34 第三章 高效率PbPc吸光層搭配SubPc模板(Template)改善光電晶體之光響應 36 3.1 簡介 36 3.1.1 文獻回顧 36 3.1.2 實驗動機 38 3.2 實驗步驟 38 3.3 SubPc/PbPc不同鍍率之光吸收效率(UV-VIS)分析 46 3.4 搭配不同SubPc模板層厚度之實驗分析 50 3.4.1 不同SubPc模板層厚度之光電晶體光響應分析 50 3.4.2 不同SubPc模板層厚度之光電晶體光電流延遲效應分析 57 第四章 後退火處理改善光感測薄膜電晶體之光響應 69 4.1 簡介 69 4.1.1 文獻回顧 69 4.1.2 實驗動機 71 4.2 實驗步驟 71 4.3 調變後退火溫度之實驗分析 76 4.3.1 不同退火溫度之光響應分析 76 4.3.2不同退火溫度之薄膜分析 87 4.4 調變後退火時間之實驗分析 90 4.4.1 不同退火時間之光響應分析 90 4.4.2 不同退火時間之薄膜分析 99 第五章 結論與未來展望 104 5.1 結論 104 5.2 未來展望 106 參考文獻 107

    [1] Seung-Eon Ahn, Ihun Song, Sanghun Jeon, Youg Woo Jeon, Young Kim, Changjung Kim, Byungki Ryu, Je-Hun Lee, Arokia Nathan, Sungsik Lee, Gyu Tae Kim, and U-In Chung, Metal oxide thin film phototransistor for remote touch interactive displays, Adv Mater, 2012, vol. 24, no. 19, p. 2631-6.
    [2] Pierre, A., A. Gaikwad, and A.C. Arias, Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors, Nature Photonics, 2017, vol. 11, no. 3, p. 193-199.
    [3] Fernando de Souza Campos, Naser Faramarzpour, Ognian Marinov, M. Jamal Deen, Jacobus W. Swart, Photodetection with gate-controlled lateral BJTs from standard CMOS technology, IEEE Sensors Journal, 2013, vol. 13, no. 5, p. 1554-1563.
    [4] Khosropour, A. and A. Sazonov, Microcrystalline silicon photodiode for large area NIR light detection applications, IEEE Electron Device Letters, 2017, vol. 38, no. 2, p. 225-227.
    [5] Xinbo Chu, Min Guan, Linsen Li, Yang Zhang, Feng Zhang, Yiyang Li, Zhanping Zhu, Baoqiang Wang, and Yiping Zeng, Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization, ACS Applied Materials & Interfaces, 2012, vol. 4, no. 9, p. 4976-4980.
    [6] Sung Heo, Jooho lee, Seong Heon Kim, Dong-Jin Yun, Jong-Bong Park, Kihong Kim, NamJeong Kim, Yongsung Kim, Dongwook Lee, Kyu-Sik Kim, and Hee Jae Kang, Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device, Scientific Reports, 2017, vol. 7, no. 1.
    [7] JaeUn Ha, S.Y., Jong-Soo Lee, and Dae Sung Chung, Organic-inorganic hybrid inverted photodiode with planar heterojunction for achieving low dark current and high detectivity, Nanotechnology, 2016, vol. 27, no. 9, p. 095203.
    [8] Min-Su Park, Mohsen Razaei, Katie Barnhart, Chee Leong Tan, and Hooman Mohseni, Surface passivation and aging of InGaAs/InP heterojunction phototransistors, Journal of Applied Physics, 2017, vol. 121, no. 23, p. 233105.
    [9] Huang, T.-H. and M.-C. Wu, Efficient light output power for InGaP/GaAs heterojunction bipolar transistors incorporated with InGaAs quantum wells, Solid-State Electronics, 2016, vol. 121, p. 12-15.
    [10] Guo-En Chang, Rikmantra Basu, Bratati Mukhopadhyay, and Prasanta K. Basu, Design and modeling of GeSn-based heterojunction phototransistors for communication applications, IEEE Journal of Selected Topics in Quantum Electronics, 2016, vol. 22, no. 6, p. 425-433.
    [11] Seunghyup Lee, Seung-Eon Ahn, Yongwoo Jeon, Ji-Hoon Ahn, Ihun Song, Sanghun Jeon, Dong-Jin Yun, Jungwoo Kim, Hyung Choi, U-in Chung, and Jaechul Park, Impact of transparent electrode on photoresponse of ZnO-based phototransistor, Applied Physics Letters, 2013, vol. 103, no. 25, p. 251111.
    [12] Jun Tae Jang, Jozeph Park, Byung Du Ahn, Dong Myong Kim, Sung-Jin Choi, Hyun-Suk Kim, and Dae Hwan Kim, Study on the photoresponse of amorphous In-Ga-Zn-O and zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation, ACS Applied Materials & Interfaces, 2015, vol. 7, no. 28, p. 15570-15577.
    [13] Stefan Knobelspies, Alwin Daus, Giuseppe Cantarella, Luisa Petti, Niko Münzenrieder, Gerhard Tröster, and Giovanni Antonio Salvatore, Flexible a-IGZO phototransistor for instantaneous and cumulative UV-exposure monitoring for skin health, Advanced Electronic Materials, 2016, vol. 2, no. 10, p. 1600273.
    [14] Huihui Zhu, Ao Liu, Fukai Shan, Wenrong Yang, Wenling Zhang, Da Li, and Jingquan Liu, One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor, Carbon, 2016, vol. 100, p. 201-207.
    [15] Myeong Gu Yun, Ye Kyun Kim, Cheol Hyoun Ahn, Sung Woon Cho, Won Jun Kang, Hyung Koun Cho, and Yong-Hoon Kim, Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process, Scientific Reports, 2016, vol. 6, no. 1, p. 31991.
    [16] Po Tsun Liu, Dun Bao Ruan, Xiu Yun Yeh, Yu Chuan Chiu, Guang Ting Zheng, and Simon M. Sze, Highly responsive blue light sensor with amorphous indium-zinc-oxide Thin-Film Transistor based Architecture, Scientific Reports, 2018, vol. 8, no. 1.
    [17] Chur-Shyang Fuh, Po-Tsun Liu, Wei-Hsun Huang, and Simon M. Sze, Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor, IEEE Electron Device Letters, 2014, vol. 35, no. 11, p. 1103-1105.
    [18] Junjun Jia, Yoshifumi Torigoshi, Ayaka Suko, Shin-ichi Nakamura, Emi Kawashima, Futoshi Utsuno, and Yuzo Shigesato, Effect of nitrogen addition on the structural, electrical, and optical properties of In-Sn-Zn oxide thin films, Applied Surface Science, 2017, vol. 396, p. 897-901.
    [19] Ke-Ding Li, Po-Wen Chen, Kao-Shuo Chang, Sheng-Chuan Hsu, and Der-Jun Jan, Indium-Zinc-Tin-Oxide Film Prepared by Reactive Magnetron Sputtering for Electrochromic Applications, Materials, 2018, doi: 10.3390/ma11112221.
    [20] Do Kyung Hwang, Young Tack Lee, Hee Sung Lee, Yun Jae Lee, Seyed Hossein Shokouh, Ji-hoon Kyhm, Junyeong Lee, Hong Hee Kim, Tae-Hee Yoo, Seung Hee Nam, Dong Ick Son, Byeong-Kwon Ju, Min-Chul Park, Jin Dong Song, Won Kook Choi, and Seongil Im, Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain, NPG Asia Materials, 2016, vol. 8, p. e233.
    [21] Hyun-Sub Shim, Hyo Jung Kim, Ji Whan Kim, Sei-Yong Kim, Won-Ik Jeong, Tae-Min Kim, and Jang-Joo Kim, Enhancement of near-infrared absorption with high fill factor in lead phthalocyanine-based organic solar cells, J. Mater. Chem., 2012, vol. 22, p. 9077-9081.
    [22] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, Amorphous transparent conductive oxide InGaO3 (ZnO)m (m≤ 4): a Zn4s conductor, Philosophical Magazine Part B, 2001, vol. 81, no. 5, p. 501-515.
    [23] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang, and B. Lewis, A study of low temperature crystallization of amorphous thin film indium-tin-oxide, Journal of Applied Physics, 1999, vol. 85, no. 12, p. 8445-8450.
    [24] M. Yasukawa, H. Hosono, N. Ueda, and H. Kawazoe, Novel transparent and electroconductive amorphous semiconductor: amorphous AgSbO3 film, Journal of Applied Physics, 1995, vol. 34, no. 3A, p. L281-L284.
    [25] X. Zhou, S. Q. Wang, G. J. Lian, and G. C. Xiong, Growth of n-type ZnO thin films by using mixture gas of hydrogen and argon, Chinese Physics, 2006, vol.15, no. 1.
    [26] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, P- channel thin-film transistor using p-type oxide semiconductor, SnO, Applied Physics Letters, 2008, vol. 93, no. 3, p. 032113.
    [27] E. Arca, K. Fleischer, and I. V. Shvets, Magnesium, Nitrogen codoped Cr2O3: a p-type transparent conducting oxide, Applied Physics Letters, 2011, vol. 99, no. 11, p. 111910.
    [28] A. J. Bosman and C. Crevecoeur, Mechanism of the electrical conduction in Li-doped NiO, Physical Review, 1966, vol. 144, no. 2, p. 763-770.
    [29] D. C. Look, G. M. Renlund, R. H. Burgener, and J. R. Sizelove, As-doped p-type ZnO produced by an evaporation∕sputtering process, Applied Physics Letters, 2004, vol. 85, no. 22, p. 5269-5271.
    [30] M. L. Tu, Y. K. Su, and C. Y. Ma, Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering, Journal of Applied Physics, 2006, vol. 100, no. 5, p. 053705.
    [31] Ding, X., Qin, C., Xu, T., Song, J., Zhang, J., Jiang, X., and Zhang, Z., Stability enhancement in InGaZnO thin-film transistor with a novel Al2O3/HfO2/Al2O3 as gate insulator, Molecular Crystals and Liquid Crystals, 2017, vol. 651, no. 1, p. 235-242.
    [32] T. Kamiya, K. Nomura, and H. Hosono, Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping, Journal of Display Technology, 2009, vol. 5, no. 7, p. 273-288.
    [33] H. Hosono, Ionic amorphous oxide semiconductors: material design, carrier transport, and device application, Journal of Non-Crystalline Solids, 2006, vol. 352, p. 851-858.
    [34] H. Hosono, M. Yasukawa, and H. Kawazoe, Novel oxide amorphous semiconductors: transparent conducting amorphous oxides, Journal of Non-Crystalline Solids, 1996, vol. 203, p. 334-344.
    [35] Yu, W., Han, D., Li, H., Dong, J., Zhou, X., Yi, Z., Luo, Z., Zhang, S., Zhang, X., and Wang, Y., Titanium doped zinc oxide thin film transistors fabricated by cosputtering technique, Applied Surface Science, 2018, vol. 459, p. 345-348.
    [36] Tang, Q., Chen, X., Wan, J., Wu, H., and Liu, C., Influence of Ga doping on electrical performance and stability of ZnO thin-film transistors prepared by atomic layer deposition, IEEE Transactions on Electron Devices, 2020, vol. 67, no. 8, p. 3129-3134.
    [37] H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, Factors controlling electron transport properties in transparent amorphous oxide semiconductors, Journal of NonCrystalline Solids, 2008, vol. 354, p. 2796-2800.
    [38] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer, Applied Physics Letters, 2005, vol. 86, no. 1, p. 013503.
    [39] T. Kamiya, K. Nomura, and H. Hosono, Present status of amorphous In-Ga-Zn-O thinfilm transistors, Science and Technology of Advanced Materials, 2010, vol. 11, no. 4, p. 044305.
    [40] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors, Japanese Journal of Applied Physics, 2009, vol. 48, no. 1, p. 010203.
    [41] 戴亞翔,TFT-LCD 面板的驅動與設計,五南圖書出版社股份有限公司,2008。
    [42] F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nature Nanotechnology, 2014, vol. 9, no. 10, p. 780-793.
    [43] Xiaohui Liu, Mingjun Zhang, Guifang Dong, Xinyue Zhang, Yapei Wang, Lian Duan, Liduo Wang, and Yong Qiu, The effect of oxygen content on the performance of low-voltage organic phototransistor memory, Organic Electronics, 2014, vol. 15, no. 7, p. 1664-1671.
    [44] Karteri, İ., Ş. Karataş, and F. Yakuphanoglu, Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators, Journal of Materials Science: Materials in Electronics, 2016, vol. 27, no. 5, p. 5284-5293.
    [45] Bo Yao, Yan Li, Zebo Fang, Yongsheng Tan, Shiyan Liu, Yingquan Peng, and Haitao Xu, Investigation of the source-drain electrodes/the active layer contact-effect on the performance of organic phototransistor, Synthetic Metals, 2017, vol. 233, p. 58-62.
    [46] Zhi Tao, Xiang Liu, Wei Lei, and Jing Chen, High sensitive solar blind phototransistor based on ZnO nanorods/IGZO heterostructure annealed by laser, Materials Letters, 2018, vol. 228, p. 451-455.
    [47] Vinh Quang Dang, Tran Quang Trung, Do-Il Kim, Le Thai Duy, Byeong-Ung Hwang, Doo-Won Lee, Bo-Yeong Kim, Le Duc Toan, and Nae-Eung Lee Dang, Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector, Small, 2015, vol. 11, no. 25, p. 3054-3065.
    [48] Jyun-Yi Li, Sheng-Po Chang, Ming-Hung Hsu, and Shoou-Jinn Chang, Photo-electrical properties of MgZnO thin-film transistors with high-k dielectrics, IEEE Photonics Technology Letters, 2018, vol. 30, no. 1, p. 59-62.
    [49] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, Control of threshold voltage in ZnO-based oxide thin film transistors, Applied Physics Letters, 2008, vol. 93, no. 3, p. 033513.
    [50] P. Barquinha, L. Pereira, G. Gonalves, R. Martins, and E. Fortunato, The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs, Electrochemical and Solid-State Letters, 2008, vol. 11, no. 9, p. H248-H251.
    [51] J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song, and C. S. Hwang, Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors, Electrochemical and Solid-State Letters, 2008, vol. 11, no. 6, p. H157-H159.
    [52] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya, and H. Hosono, Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors, Applied Physics Letters, 2011, vol. 99, no. 9, p. 093507.
    [53] C. Y. Chien, Y. J. Chang, J. E. Chang, M. S. Lee, W. Y. Chen, T. M. Hsu, and P. W. Li, Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics, Nanotechnology, 2010, vol. 21, no. 50.
    [54] Xing Wang, Hongfei Li, Zisheng Su, Fang Fang, Guang Zhang, Junbo Wang, Bei Chu, Xuan Fang, Zhipeng Wei, Bin Li, and Wenlian Li, Efficient organic near-infrared photodetectors based on lead phthalocyanine/C60 heterojunction, Organic Electronics, 2014, vol. 15, p. 2367-2371.
    [55] Min-Soo Choi, Sangmin Chae, Hyo Jung Kim, and Jang-Joo Kim, Control of crystallinity in PbPc:C60¬ blend film and application for inverted near-infrared organic photodetector, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 25614-25620.
    [56] Yao Li, Wenli Lv, Xiao Luo, Lei Sun, Feiyu Zhao, Jianping Zhang, Junkang Zhong, Fobao Huang, and Yingquan Peng, Enhanced performance of PbPc photosensitive organic field effect transistors by inserting different-thickness pentacene inducing layers, Organic Electronics, 2015, vol. 26, p. 186-190.
    [57] Karolien Vasseur, Barry P. Rand, David Cheyns, Ludo Froyen, and Paul Heremans, Structural evolution of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells, Chem. Mater., 2011, vol. 23, p. 886-895.
    [58] Karolien Vasseur, Katharina Broch, Alexander L. Ayzner, Barry P. Rand, David Cheyns, Christian Frank, Frank Schreiber, Michael F. Toney, Ludo Froyen, and Paul Heremans, Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 8505-8515.
    [59] A. Miyamoto, K. Nichogi, A. Taomoto, T. Nambu, and M. Murakami, Structural control of evaporated lead-phthalocyanine films, Thin Solid Films, 1995, vol. 256, p. 64467.
    [60] Yao Li, Jianping Zang, Wenli Lv, Xiao Luo, Lei Sun, Junkang Zhong, Feiyu Zhao, Fobao Huang, and Yingquan Peng, Substrate temperature dependent performance of near infrared photoresponsive organic field effect transistors based on lead phthalocyanine, Synth. Met., 2015, vol. 205, p. 190-194.
    [61] L Ottaviano, L Lozzi, A.R Phani, A Ciattoni, S Santucci, and S Di Nardo, Thermally induced phase transition in crystalline lead phthalocyanine films investigated by XRD and atomic force microscopy, Appl. Surf. Sci., 1998, vol. 136, p. 81-86.
    [62] Wei Zhao, John P. Mudrick, Ying Zheng, William T. Hammond, Yixing Yang, and Jiangeng Xue, Enhancing photovoltaic response of organic solar cells using a crystalline molecular template, Organic Electronics, 2012, vol. 13, p. 129-135.
    [63] C.-S. Fuh, P.-T. Liu, W.-H. Huang, and S. M. Sze, Effect of annealing on defect elimination for high mobility amorphous indium-zinc-tin-oxide thin-film transistor, IEEE Electron Device Letters, 2014, vol. 35, no. 11, p. 1103-1105.
    [64] R. Li, S. Dai, J. Su, Y. Ma, Y. Wang, D. Zhou, and X. Zhang, Effect of thermal annealing on the electrical characteristics of an amorphous IZTO:Li thin film transistor fabricated using the magnetron sputtering method, Materials Science in Semiconductor Processing, 2019, vol. 96, p. 8-11.
    [65] I. Noviyana, A. D. Lestari, M. Putri, M.-S. Won, J.-S. Bae, Y.-W. Heo, and H. Y. Lee, High mobility thin film transistors based on amorphous indium zinc tin oxide, Materials (Basel), 2017, vol. 10, no. 7.
    [66] Solah Park, Kyung Park, Hojoong Kim, Hyun-Woo Park, Kwun-Bum Chung, and Jang-Yeon Kwon, Light-induced bias stability of crystalline indium-tin-zinc-oxide thin film transistors, Applied Surface Science, 2020, vol. 526, p. 146655.
    [67] Po-Tsun Liu, Chih-Hsiang Chang, and Chur-Shyang Fuh, Enhancement of reliability and stability for transparent amorphous indium-zinc-tin-oxide thin film transistors, RSC Advance, 2013, doi: 10.1039/C6RA22423G.
    [68] Y. S. Chun, S. Chang, and S. Y. Lee, Effects of gate insulators on the performance of a-IGZO TFT fabricated, Microelectronic Engineering, 2011, vol. 88, no. 7, p. 1590-1593.
    [69] S. Y. Lee, S. Chang, and J. S. Lee, Role of high-k gate insulators for oxide thin film transistors, Thin Solid Films, 2010, vol. 518, no. 11, p. 3030-3032.
    [70] Jinbao Su, Ye Wang, Yaobin Ma, Qi Wang, Longjie Tian, Shiqian Dai, Ran Li, Xiqing Zhang, and Yongsheng Wang, Preparation and electrical characteristics of N-doped In-Zn-Sn-O thin film transistors by radio frequency magnetron sputtering, Journal of Alloys and Compounds, 2018, vol. 750, p. 1003-1006.
    [71] Jun Young Kim, Jeonghun Kwak, Seunguk Noh, and Changhee Lee, Enhanced performance of SubPC/C60 solar cells by annealing and modifying surface morphology, J. Nanosci. Nanotechnol., 2012, vol. 12, no. 7.
    [72] L Ottaviano, L Lozzi, A.R Phani, A Ciattoni, S Santucci, and S Di Nardo, Thermally induced phase transition in crystalline lead phthalocyanine films investigated by XRD and atomic force microscopy, Applied Surface Science, 1998, vol. 136, p. 81-86.
    [73] K. Mizoguchi, K. Mizui, D. G. Kim, and M. Nakayama, Optoelectronic properties of orientation-controlled lead phthalocyanine films, Jpn. J. Appl. Phys., 2002, vol. 41, p. 6421-6425.
    [74] C. Hamann, A. Mrwa, and M. Muller, Lead phthalocyanine thin films for NO2 sensors, Sensors and Actuators B, 1991, vol. 4, p. 73-78.
    [75] Yao Li, Miao Pan, Yao Hu, Zaixing Wang, Wenli Lv, and Yingquan Peng, The influence of substrate temperature on the near-infrared absorption and carrier mobility of lead phthalocyanine phototransistors, Thin Solid Films, 2021, vol. 718, p. 138481.
    [76] Young Hoon Son, Gyeong Woo Kim, Woo Sik Jeon, Ramchandra Pode, and Jang Hyuk Kwon, Thermal annealing effect of subphthalocyanine (SubPc) donor material in organic solar cells, Mol. Cryst. Liq. Cryst., 2012, vol. 565, p. 8-13.
    [77] Lizhi Yan, Xingzhi Du, Chuan Liu, Shengdong Zhang, and Hang Zhou, Narrow bandgap Pb-Sn perovskites/InGaZnO hybrid phototransistors for near-infrared detection, Phys. Status Solidi A, 2019, vol. 216, p. 1900417.¬
    [78] Yuzhi Li, Xuan Shi, Fangbo Dai, Dahua Zhou, Minghui Jin, Hongying Zheng, Yuhui Yang, Hongquan Zhao, and Junzhong Wang, Enhancement of photodetection by PbSe quantum dots on atomic-layered GeS devices, J. Phys. D: Appl. Phys., 2020, vol. 53, p. 505102.
    [79] Ali Sehpar Shikoh, Gi Sang Choi, Sungmin Hong, Kwang Seob Jeong, and Jaekyun Kim, High-sensitivity hybrid PbSe/ITZO thin film-based phototransistor detecting from 2100 to 2500 nm near-infrared illumination, Nanotechnology, 2022, vol. 33, p. 165501.

    無法下載圖示 全文公開日期 2027/08/21 (校內網路)
    全文公開日期 2027/08/21 (校外網路)
    全文公開日期 2027/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE