簡易檢索 / 詳目顯示

研究生: 陳政融
Zheng-Rong Chen
論文名稱: 基於訊號式分析與神經網絡模型之四旋翼螺旋槳異常檢知
Fault Detection for Quadrotor Propellers Based on Signal Analysis and Neural Network Model
指導教授: 藍振洋
Chen-yang Lan
口試委員: 劉孟昆
Meng-Kun Liu
張以全
I-Tsyuen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 100
中文關鍵詞: 無人飛行載具故障診斷訊號式分析機器學習
外文關鍵詞: UAV, Fault diagnosis, Signal analysis, Machine Learning
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

無人飛行載具(Unmanned Aerial Vehicle,UAV)近幾年隨著科技的發展,因其 構造簡單、低成本、高機動性、垂直起落等特性,在各領域被廣泛地使用,所以 為了使無人機能穩健地完成任務,提升無人機的安全性,且及時診斷出無人機失 效是相當具有價值的研究。本論文提出了基於時域、頻域分析與人工類神經網路 之螺旋槳異常檢知,使用訊號式分析的方法來檢視故障特徵,利用機體上不同的 振動訊號來檢驗四旋翼螺旋槳損壞情況,並透過時域與頻域的分析比較出機體的 振動情況,再由機器學習作為分類器辨別出系統螺旋槳的故障狀態。本研究探討 三種不同螺旋槳損壞情況對於機體的振動進行比較,並尋找出特徵頻率檢視頻域 的指標,再結合時域的指標統計,選擇出對振動訊號較敏感的時域指標,最後分 析出相異指標之間的差異性與同質性,凸顯出顯著特徵,並將顯著特徵加入機器 學習實現分類螺旋槳損壞的結果。


Unmanned Aerial vehicles (UAV) is widely applied in many fields in recent years. It has the advantages of simple structure, low cost, high maneuverability, and Vertical Take-Off and Landing (VTOL). Hence, it is motivated to study the operation safety for UAVs and the on-line fault diagnosis. As an attempt to tackle this issue, this thesis investigates the damaged propellers through vibration signal in time domain and frequency domain and neural network. Fault features are then identified by utilizing signal-based analysis methods. The first step is to inspect the damage of the quadrotor propeller through different vibration signals on the frame, and then to compare the vibration of the frame through the analysis in both time domain and frequency domain. At last the condition of the system propellers is detected by the machine learning classifier. This research compares the propeller damages in three different conditions from the vibration of the frame. The characteristic frequencies are identified and used to access the condition of the propellers. In addition, the statistics index is used to select and analyze the most sensitive feature in the time domain vibration data. In such a way, the significant features are acquired by comparing with homogeneity. Finally, the selected significant features are fed to the model of machine learning for training and achieved fault detection and diagnosis on the propellers.

摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 故障診斷 2 1.2.2 機器學習 8 1.3 研究動機與本文架構 12 第二章 故障檢測分析方法與理論基礎 13 2.1 數據處理與分析方法介紹 13 2.1.1 取樣理論 13 2.1.2 傅立葉分析 14 2.2 統計學與檢定介紹 18 2.2.1 統計學與統計指標 19 2.2.2 同質檢定與事後子集合分析介紹 21 2.2.3 變異數分析介紹 23 2.3 機器學習介紹 24 2.3.1 人工類神經網路 24 2.3.2 交叉驗證法 27 第三章 硬體架設與實驗規劃 28 3.1 硬體簡介 28 3.1.1 機體系統 28 3.1.2 動力系統 29 3.1.3 控制系統 30 3.1.4 資料擷取設備 31 3.2 硬體接線圖 31 3.2.1 四旋翼接線圖 31 3.2.2 量測設備設置 32 3.2.3 擷取程式流程 34 3.3 實驗規劃與擷取流程介紹 35 3.3.1 實驗目的 35 3.3.2 故障特徵建立 35 3.3.3 訊號擷取介紹 36 3.4 故障診斷流程 37 3.4.1 機體振動模擬 38 3.4.2 時域特徵選擇與流程 39 3.4.3 頻域特徵選擇與流程 40 3.4.4 機器學習診斷分類 41 第四章 實驗結果與分析 42 4.1 模擬結果與實驗結果分析 42 4.1.1 模擬參數 42 4.1.2 模擬結果 46 4.1.3 單軸懸臂實驗結果 49 4.1.4 四軸懸臂實驗結果 55 4.2 時域指標分析 65 4.2.1 敘述統計結果 65 4.2.2 時域指標同質性檢定結果 68 4.2.3 時域指標子集合分析結果 69 4.2.4 時域指標ANOVA分析結果 74 4.3 頻域指標分析 76 4.3.1 傅立葉頻譜分析結果 76 4.3.2 頻域指標同質性檢定結果 76 4.3.3 頻域指標子集合分析結果 77 4.3.4 頻域指標ANOVA分析結果 80 4.4 機器學習驗證 82 第五章 結果討論與未來展望 83 5.1 結果討論 83 5.2 未來展望 84 參考文獻 85

[1] Y. Zhang et al., "Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed," Journal of the Franklin Institute, vol. 350, no. 9, pp. 2396-2422, 2013.
[2] K. Tidriri, N. Chatti, S. Verron, and T. Tiplica, "Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges," Annual Reviews in Control, vol. 42, pp. 63-81, 2016.
[3] Z. Gao, C. Cecati, and S. X. Ding, "A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches," IEEE transactions on industrial electronics, vol. 62, no. 6, pp. 3757-3767, 2015.
[4] Y. Xing, H. Wu, X. Wang, and Z. Li, "Survey of fault diagnosis and fault-tolerance control technology for spacecraft," Journal of Astronautics, vol. 24, no. 3, pp. 221-226, 2003.
[5] M. Tafazoli, "A study of on-orbit spacecraft failures," Acta Astronautica, vol. 64, no. 2-3, pp. 195-205, 2009.
[6] K. C. . Daly, E. Gai, and J. V. Harrison, "Generalized likelihood test for FDI in redundant sensor configurations," Journal of Guidance and Control, vol. 2, no. 1, pp. 9-17, 1979.
[7] J. Li and Y. Li, "Dynamic analysis and PID control for a quadrotor," in 2011 IEEE International Conference on Mechatronics and Automation, 2011: IEEE, pp. 573-578.
[8] D. Cabecinhas, R. Cunha, and C. Silvestre, "A nonlinear quadrotor trajectory tracking controller with disturbance rejection," Control Engineering Practice, vol. 26, pp. 1-10, 2014.
[9] A. Freddi, S. Longhi, and A. Monteriu, "A model-based fault diagnosis system for a mini-quadrotor," in 7th workshop on Advanced Control and Diagnosis, 2009, pp. 19-20.
[10] J. Gertler, "Fault detection and isolation using parity relations," Control engineering practice, vol. 5, no. 5, pp. 653-661, 1997.
[11] K. Geng and N. Chulin, "Applications of multi-height sensors data fusion and fault-tolerant Kalman filter in integrated navigation system of UAV," Procedia Computer Science, vol. 103, pp. 231-238, 2017.
[12] M. Moghadam and F. Caliskan, "Actuator and sensor fault detection and diagnosis of quadrotor based on two-stage kalman filter," in 2015 5th Australian Control Conference (AUCC), 2015: IEEE, pp. 182-187.
[13] J. L. Crassidis, "Sigma-point Kalman filtering for integrated GPS and inertial navigation," IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 2, pp. 750-756, 2006.
[14] H. J. Nussbaumer, "The fast Fourier transform," in Fast Fourier Transform and Convolution Algorithms: Springer, 1981, pp. 80-111.
[15] D. Griffin and J. Lim, "Signal estimation from modified short-time Fourier transform," IEEE Transactions on acoustics, speech, and signal processing, vol. 32, no. 2, pp. 236-243, 1984.
[16] C. Vonesch, T. Blu, and M. Unser, "Generalized Daubechies wavelet families," IEEE Transactions on Signal Processing, vol. 55, no. 9, pp. 4415-4429, 2007.
[17] G. Rilling, P. Flandrin, and P. Goncalves, "On empirical mode decomposition and its algorithms," in IEEE-EURASIP workshop on nonlinear signal and image processing, 2003, vol. 3, no. 3: Citeseer, pp. 8-11.
[18] K. Dragomiretskiy and D. Zosso, "Variational mode decomposition," IEEE transactions on signal processing, vol. 62, no. 3, pp. 531-544, 2013.
[19] X. Zhang, Z. Zhao, Z. Wang, and X. Wang, "Fault detection and identification method for quadcopter based on airframe vibration signals," Sensors, vol. 21, no. 2, p. 581, 2021.
[20] B. Ghalamchi and M. Mueller, "Vibration-based propeller fault diagnosis for multicopters," in 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 2018: IEEE, pp. 1041-1047.
[21] G. Iannace, G. Ciaburro, and A. Trematerra, "Fault diagnosis for UAV blades using artificial neural network," Robotics, vol. 8, no. 3, p. 59, 2019.
[22] A. Kusiak and A. Verma, "A data-driven approach for monitoring blade pitch faults in wind turbines," IEEE Transactions on Sustainable Energy, vol. 2, no. 1, pp. 87-96, 2010.
[23] F. Pourpanah, B. Zhang, R. Ma, and Q. Hao, "Anomaly detection and condition monitoring of UAV motors and propellers," in 2018 IEEE SENSORS, 2018: IEEE, pp. 1-4.
[24] R. A. Fisher, "The use of multiple measurements in taxonomic problems," Annals of eugenics, vol. 7, no. 2, pp. 179-188, 1936.
[25] R. Swinburne, "Bayes' Theorem," 2004.
[26] D. R. Cox, "The regression analysis of binary sequences," Journal of the Royal Statistical Society: Series B (Methodological), vol. 20, no. 2, pp. 215-232, 1958.
[27] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain," Psychological review, vol. 65, no. 6, p. 386, 1958.
[28] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE transactions on information theory, vol. 13, no. 1, pp. 21-27, 1967.
[29] J. Quinlan, "Induction of Decision Trees. Mach. Learn," 1986.
[30] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees. CRC press, 1984.
[31] S. L. Salzberg, "C4. 5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993," ed: Springer, 1994.
[32] Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural computation, vol. 1, no. 4, pp. 541-551, 1989.
[33] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
[34] Y. Freund, "Boosting a weak learning algorithm by majority," Information and computation, vol. 121, no. 2, pp. 256-285, 1995.
[35] L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.
[36] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[37] J. WARD, "&dquo; Hierarchical grouping to optimize an objective function. &dquo; J. of the Amer," Stat. Assn, vol. 58, pp. 236-244, 1963.
[38] R. Sibson, "SLINK: an optimally efficient algorithm for the single-link cluster method," The computer journal, vol. 16, no. 1, pp. 30-34, 1973.
[39] D. Defays, "An efficient algorithm for a complete link method," The Computer Journal, vol. 20, no. 4, pp. 364-366, 1977.
[40] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," Journal of the Royal Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1-22, 1977.
[41] R. Rosipal and L. J. Trejo, "Kernel partial least squares regression in reproducing kernel hilbert space," Journal of machine learning research, vol. 2, no. Dec, pp. 97-123, 2001.
[42] K. Pearson, "LIII. On lines and planes of closest fit to systems of points in space," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp. 559-572, 1901.
[43] L. Cayton, "Algorithms for manifold learning," Univ. of California at San Diego Tech. Rep, vol. 12, no. 1-17, p. 1, 2005.
[44] S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," science, vol. 290, no. 5500, pp. 2323-2326, 2000.
[45] J. B. Tenenbaum, V. De Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," science, vol. 290, no. 5500, pp. 2319-2323, 2000.
[46] M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural computation, vol. 15, no. 6, pp. 1373-1396, 2003.
[47] I. J. Goodfellow et al., "Generative adversarial networks," arXiv preprint arXiv:1406.2661, 2014.
[48] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems. University of Cambridge, Department of Engineering Cambridge, UK, 1994.
[49] E. Levin, R. Pieraccini, and W. Eckert, "Using Markov decision process for learning dialogue strategies," in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat. No. 98CH36181), 1998, vol. 1: IEEE, pp. 201-204.
[50] M. Haruno and M. Kawato, "Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning," Neural networks, vol. 19, no. 8, pp. 1242-1254, 2006.
[51] M. Volodymyr et al., "Playing atari with deep reinforcement learning," in NIPS Deep Learning Workshop, 2013.
[52] Y. Chen et al., "Bayesian optimization in alphago," arXiv preprint arXiv:1812.06855, 2018.
[53] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT press, 2009.
[54] A. Benini, F. Ferracuti, A. Monteriù, and S. Radensleben, "Fault detection of a vtol uav using acceleration measurements," in 2019 18th European Control Conference (ECC), 2019: IEEE, pp. 3990-3995.
[55] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, A. J. Hudspeth, and S. Mack, Principles of neural science. McGraw-hill New York, 2000.

無法下載圖示 全文公開日期 2026/10/27 (校內網路)
全文公開日期 2026/10/27 (校外網路)
全文公開日期 2026/10/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE