簡易檢索 / 詳目顯示

研究生: 歐婷妤
Ting-Yu Ou
論文名稱: 三重態與三重態淬滅與水平排列藍色螢光材料合成與鑑定及其在有機發光二極體之應用
Synthesis and Characterization of Triplet-Triplet Annihilation and Horizontal Arrangement Blue Fluorescent Materials for Organic Light Emitting Diodes
指導教授: 陳錦地
Chin-Ti Chen
江志強
Jyh-Chiang Jiang
口試委員: 陳錦地
Chin-Ti Chen
江志強
Jyh-Chiang Jiang
陶雨臺
Yu-Tai Tao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 253
中文關鍵詞: 有機發光二極體三重態與三重態淬滅上轉換藍光材料水平排列取向
外文關鍵詞: organic light-emitting diodes, triplet-triplet annihilation upconversion, blue emitter, horizontal alignment, naphthalene, anthracene, phenanthrene, pyrene, perylene
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以蒽(Anthracene, An)與芘(Pyrene, Pyr)作為中心結構 加入 B4Ph 基團期望可以讓分子在薄膜呈現水平排列,進而提高出光耦合效率 (????);另一邊基團置換不同的稠環分子,分別為萘(Naphthalene, Nap)、蒽、菲 (Phenanthrene, Phn)、 芘及苝(Perylene, Pry),期望可以讓分子增加三重態激子使用率,進而提高 TTA-UC的機率。
    本論文合成出兩系列可能具 TTA-UC特性與水平排列共 10個化合物分別為NapAnB4Ph、 AnAnB4Ph、 PhnAnB4Ph、 PyrAnB4Ph、 PryAnB4Ph、NapPyrB4Ph、 AnPyrB4Ph、 PhnPyrB4Ph、PyrPyrB4Ph與 PryPyrB4Ph。所有分子皆進行理論計算和光物理量測 ,亦製成無摻雜有機發光二極體元件量測電致發光性質,從中探討這些化合物具備 TTA-UC性質的可能性。 其中以 PyrAnB4Ph 在元件的
    表現上最為優異,其外部量子效率 (external quantum yield, EQE)達 1931CIE座標為 (0.18, 0.19),為正藍光。且量測暫態電致發光(transient electroluminescence, TrEL)發現其具時間延遲, 表示此元件有利用到三重態激子,並排除其為材料 TADF、HLCT 的可能性, 證實 PyrAnB4Ph OLEDs 很可能有 TTA-UC 的性質。


    We designed blue TTA-UC materials using Anthracene (An) and Pyrene (Pyrene, Pyr) as the central structures. Adding B4Ph group is expected to make the molecules arrange horizontally in the film, thereby improving the light coupling efficiency (????). The other side of the group, we replaced different fused-ring moieties, which are Naphthalene (Nap), Anthracene, Phenanthrene (Phn), Pyrene (Pyr) and Perylene (Pry). We anticipated that different fused-ring moieties can affect triplet exciton utilization rate, and thereby increasing the probability of TTA-UC of the designed materials. In this thesis, we synthesized two series of 10 compounds with possible TTA-UC properties and horizontal arrangement (NapAnB4Ph, AnAnB4Ph, PhnAnB4Ph, PyrAnB4Ph, PryAnB4Ph, NapPyrB4Ph, AnPyrB4Ph, PhnPyrB4Ph, PyrPyrB4Ph and PryPyrB4Ph). To discuss TTA-UC conditions, we investigated the theoretical calculations, optical properties, as well as electroluminescent properties of non-doped OLEDs. Among two series, PyrAnB4Ph exhibited the best perform external quantum efficiency (EQE) up to 4.89%, with 1931 Commission Internationale de l' Eclairage coordinates (CIEx,y) of (0.18, 0.19), displaying a true blue electroluminescence.The measurement of transient electroluminescence (TrEL) revealed that it has delayed electroluminescence (EL). Through other measurement studies, we excluded the possibility that it is a TADF and HLCT material, confirming that PyrAnB4Ph OLEDs possess TTA-UC properties.

    摘要 IV Abstract V 目錄 VII 圖目錄 X 表目錄 XV 第一章、緒論 1 1.1前言 1 1.2有機發光二極體發展歷史 2 1.3螢光和磷光放光原理 6 1.4有機發光二極體原理與元件架構 8 1.4.1 發光原理 8 1.4.2 元件架構 9 1.4.3 陰極材料(Cathode) 12 1.4.4 陽極材料(Anode) 12 1.4.5 電子注入層材料(Electron injection layer, EIL) 12 1.4.6 電子傳輸層材料(Electron transporting layer, ETL) 12 1.4.7 電洞注入層材料 (Hole injection layer, HIL) 13 1.4.8 電洞傳輸層材料 (hole transport layer, HTL) 14 1.5主體與客體摻雜系統 14 1.5.1 螢光共振能量轉移(Förster resonance energy transfer, FRET) 15 1.5.2 德克斯特電子轉移(Dexter energy transfer, DET) 16 1.6有機發光二極體之元件效率 17 1.6.1 內部量子效率(internal quantum efficiency, IQE) 17 1.6.2 外部量子效率(external quantum efficiency, EQE) 18 1.7有激發光二極體之機制種類 18 1.7.1 第一代有機發光二極體(1st OLEDs materials)-螢光材料(fluorescence material) 19 1.7.2 第二代有機發光二極體(2nd OLEDs materials)-螢光材料(fluorescence material) 20 1.7.3 第三代有機發光二極體 (3rdOLED materials)-熱活化延遲螢光材料(Thermally activated delayed fluorescence) 21 1.7.4 三重態與三重態淬滅上轉換(triplet-triplet annihilation upconversion, TTA-UC) 23 1.7.5 混合局部激發與電荷轉移(hybridized local and charge transfer, HLCT) 26 1.8文獻回顧 28 1.8..1 OLEDs藍光材料 28 1.8.2 TTA材料 33 1.8.3 分子沉積方向性與水平排列分子設計 38 1.9研究動機 47 第二章、實驗部分 51 2.1 藥品 51 2.2 溶劑前處理 53 2.3 儀器設備 53 2.4 有機發光二極體元件之製作與效率測量 59 2.4.1 元件製作流程及量測 59 2.5 合成步驟 60 2.5.1 化合物A Group之合成步驟 62 2.5.2 化合物B Group(B4Ph)之合成步驟 67 2.5.3 AnB4Ph系列化合物之合成步驟 77 2.5.4 PyrB4Ph系列化合物之合成步驟 83 第三章、結果與討論 89 3.1 合成 89 3.2 熱性質鑑定 89 3.2.1 TGA量測 90 3.2.2 DSC量測 92 3.3 理論計算 95 3.4 光物理性質 100 3.4.1 吸收光譜(UV-vis) 100 3.4.2 溶液與薄膜之室溫螢光放射光譜 102 3.4.3 螢光量子產率 105 3.4.4 溶劑致變色效應 109 3.5 循環伏安電化學圖譜(CV) 112 3.6 低掠角廣角度X光散射圖(2D-GIWAXS) 116 3.7 單晶X射線繞射結構分析(X-ray crystallography) 121 3.8 OLEDs元件結果與討論 123 第四章、結論 130 參考資料 132 附錄、1H、13C之核磁光譜圖、質譜圖、X光單晶繞射數據 140

    1. https://ppt-online.org/1049860
    2. Pope, M.; Kallmann, H. P.; Magnante, P., J. Chem. Phys. 1963, 38, 2042-2043.
    3. Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J. M.; Brase, S., Adv. Mater. 2021, 33, 2005630.
    4. Tang, C. W.; VanSlyke, S. A., Appl. Phys. Lett. 1987, 51, 913-915.
    5. Burroughes, J. H.; Bradley, D. D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Nature 1990, 347, 539-541.
    6. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Nature 1998, 395, 151-154.
    7. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Appl. Phys. Lett. 1999, 74, 442-444.
    8. Kido, J.; Iizumi, Y. Fabrication of efficient organic electroluminescent devices. Applied Physics Letter 1998, 73, 2721-2723.
    9. Baldo, M. A.; Forrest, S. R. Transient analysis of electrophosphrescence: I. Transient analysis of triplet energy transfer. Physicacl Review B 2000, 62, 10958.
    10. Baldo, M. A.; Adachi, C.; Forrest, S. R. Transient analysis of organic electrophosphrescence: II. Transient analysis of triplet-triplet annihilation. Physicacl Review B 2000, 62, 10967.
    11. Parker, C.; Hatchard, C., Trans. Faraday SOC. 1961, 57, 1894-1904.
    12. Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C., Adv. Mater. 2009, 21, 4802-4806.
    13. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Nature 2012, 492, 234-238.
    14. Hu, D.; Yao, L.; Yang, B.; Ma, Y., Philos. Trans. Royal Soc. A 2015, 373, 1-16.
    15. Sun, N.; Jiang, C.; Li, Q.; Tan, D.; Bi, S.; Song, J., J. Mater. Sci. Mater. Electron. 2020, 31, 20688-20729.
    16. Adachi, C.; Tsutsui, T.; Saito, S. Organic electroluminescent device having a hole conductor as an emitting layer. Applied Physics Letter 1989, 55, 1489-1491.
    17. Bauri, J.; Choudhary, R. B.; Mandal, G., J. Mater. Sci. 2021, 56, 18837-18866.
    18. Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A., Chem. Mater. 2004, 16, 4556-4573.
    19. Hung, L.; Chen, C., Mater. Sci. Eng. 2002, 39, 143-222.
    20. https://www.materialsnet.com.tw/DocView.aspx?id=8642#:~:text=%E7%9B%AE%E5%89%8D%E5%B7%B2%E7%9F%A5%E7%9A%84%E9%9B%BB%E5%AD%90,%E8%BC%83%E4%BD%8E%E4%B8%94%E6%88%90%E6%9C%AC%E9%AB%98%E3%80%82
    21. Salehi, A.; Fu, X.; Shin, D. H.; So, F., Adv. Funct. Mater. 2019, 29, 1808803.
    22. Nowy, S. Understanding losses in OLEDs: optical device simulation and electrical characterization using impedance spectroscopy. Augsburg University 2010. https://core.ac.uk/download/pdf/35097197.pdf
    23. Wang, J; Chepelianskii, C; Gao, F; Greenham, N. C. Control of exciton spin statistics through spin polarization in organic optoelectronic devices. Nature Communications 2012, 3, 1-6.
    24. Xu, Z.; Tang, B. Z.; Wang, Y.; Ma, D., J. Mater. Chem 2020, 8, 2614-2642.
    25. Ikai, M.; Tokito, S.; Sakamoto, Y.; Suzuki, T.; Taga, Y., Appl. Phys. Lett. 2001, 79, 156-158.
    26. Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J., Adv. Mater. 2011, 23, 926-952.
    27. Wong, M. Y.; Zysman-Colman, E., Adv. Mater. 2017, 29, 1605444.
    28. https://www.energy.gov/sites/prod/files/2015/02/f19/adachi_oledtadf_sanfrancisco2015.pdf
    29. Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C., Appl. Phys. Lett. 2011, 98, 083302.
    30. Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P., Chem. Soc. Rev. 2017, 46, 915-1016.
    31. Lee, S. Y.; Yasuda, T.; Park, I. S.; Adachi, C., Dalton Trans. 2015, 44, 8356-8359.
    32. Cho, Y. J.; Jeon, S. K.; Chin, B. D.; Yu, E.; Lee, J. Y., Angew. Chem. Int. Ed. 2015, 54, 5201-5204.
    33. Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T., Adv. Mater. 2016, 28, 2777-2781.
    34. Gao, C.; Wong, W. W.; Qin, Z.; Lo, S. C.; Namdas, E. B..; Dong, H.; Hu, W. Application of Triplet–Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. Advanced Materials 2021, 33, 2100704.
    35. Ieuji, R.; Goushi, K.; Adachi, C. Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nature Communications 2019, 10. 5283.
    36. Chiang,C. J.; Kimyonok, A.; Etherington,M. K.; Griffith, G. C.; Jankus, V.; Turksoy, F * and Andy P. Monkman Adv. Funct. Mater. 2013, 23, 739–746
    37. Cheng, Y. Y.; F€uckel, B.; Khoury, T.; Clady, R. C. G. R.; Tayebjee, M. J. Y.; Ekins-Daukes, N. J.; Crossley, M. J.; Schmidt, T. W. Kinetic Analysis of Photochemical Upconversion by Triplet-Triplet Annihilation: Beyond Any SpinStatistical Limit. J. Phys. Chem. Lett. 2010, 1, 1795–1799
    38. Bharmoria, P.; Bildirir, H.; Moth-Poulsen, K. Triplet–triplet annihilation based near infrared to visible molecular photon upconversion. Chemical Society Reviews 2020, 49. 6529-6554
    39. Lim, H.; Woo, S.-J.; Ha, Y. H.; Kim, Y.-H. and Kim, J.-J. Adv. Mater. 2022, 34, 2100161.
    40. Li, W.; Pan, Y.; Xiao, R.; Peng, Q.; Zhang, S.; Ma, D.; Li, F.; Shen, F.; Wang, Y.; Yang, B.; Ma, Y., Adv. Funct. Mater. 2014, 24, 1609-1614.
    41. Lee, J.-H.; Lin, H.-Y.; Chen, C.-H.; Lee, Y.-T.; Chiu, T.-L.; Lee, J.-H.; Chen, C.-T.; Adachi, C. ACS Applied Material & Interfaces 2021, 13, 34605-34615.
    42. https://zh.wikipedia.org/zhtw/CIE_1931%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%97%B4#:~:text=%E5%9C%A8CIE%20XYZ%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%96%93,%E9%A1%8F%E8%89%B2%E5%8C%B9%E9%85%8D%E5%87%BD%E6%95%B8%E4%BE%86%E8%A8%88%E7%AE%97%E3%80%82
    43. https://www.computerdiy.com.tw/spyder-2/
    44. Huang, J.; Su J.-H.; Tian, H., J. Mater. Chem., 2012, 22, 10977-10989.
    45. Adachi, C.; Tsutsui, T.; Saito, S., Appl. Phys. Lett., 1990, 56, 799–801.
    46. Zheng, C.-J.; Zhao, W.-M.; Wang, Z.-Q-; Huang, D.; Ye, J.; Ou, X.-M.; Zhang, X.-H.; Lee, C.-S.; Lee, S.-T. J. Mater. Chem., 2010, 20, 1560-1566.
    47. Adachi, C.; Kwong, R., C.; Djurovich, R; Adamovich, V.; Baldo, M., A.; Thompson, M., E.; Forrest, S., R. Appl. Phys. Lett., 2001, 79, 2082–2084.
    48. Jeon, S., O.; Lee, J., Y. J. Mater. Chem., 2012, 22, 4233.
    49. Yang, X.; Xu, X.; Zhou, G. J. Mater. Chem. C, 2015, 3, 913-944.
    50. Lee, J.; Chen, H.-F.; Batagoda, T.; Coburn, C.; Djurovich, P., I.; Thompson, M., E.; Forrest, S., R. Nature Materials, 2016, 15, 92–98.
    51. Fleetham, T.; Li, G.; Wen, L.; Li, J. Adv. Mater., 2014, 26, 7116–7121.
    52. Shin, H.; Ha, Y., H.; Kim, H.-G.; Kim, R.; Kwon, S.-K.; Kim, Y.-H.; Kim, J.-J. Adv. Mater., 2019, 31, 1808102.
    53. Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc., 2012, 36, 14706–14709.
    54. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature, 492, 234–238.
    55. Tsai,W.-L.; Huang, M.-H.; Lee,W.-K.; Hsu, Y.-J.; Pan, K.-C.; Huang, T.-H.; Ting, H.-C.; Sarma, M.; Ho, Y.-Y.; Hu, H.-C.; Chen, C.-C.; Lee, M.-T.; Wong, K.-T.; Wu, C.-C. Chem. Commun., 2015, 51, 13662-13665.
    56. Lin,T.-A.; Chatterjee, T.; Tsai, W.-L.; Lee, W.-K.; Wu, M.-J.; Jiao, M.; Pan, K.-C.; Yi, C.-L.; Chung, C.-L.; Wong, K.-T.; Wu, C.-C. Adv. Mater., 2016, 28, 6976–6983.
    57. Chan, C.-Y.; Cui, L.-S.; Kim, J., U.; Nakanotani, H.; Adachi, C. Adv. Funct. Mater., 2018, 28, 1706023.
    58. Zeng,X.; Pan, K.-C.; Lee, W.-K.; Gong, S.; Ni, F.; Xiao, X.; Zeng,W.; Xiang, Y.; Zhan , L.; Zhang, Y.; Wu, C.-C.; Yang, C. J. Mater. Chem. C, 2019, 7, 10851—10859.
    59. Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater., 2016, 28, 2777–2781.
    60. Pershin, A.; Hall, D.; Lemaur, V.; Sancho-Garcia, J.-C.; Muccioli, L.; Zysman-Colman, E.; Beljonne, D.; Olivier, Y. Nature Communications, 2019, 10, 597.
    61. Naveen, K. R.; Lee, H.; Seung, L., H.; Jung, Y., H.; Prabhu, C.P., K.; Muruganantham, S.; Kwon, J., H. Chemical Engineering Journal, 2023, 451, 38498.
    62. Bae, H. W., Kim, G. W., Lampande, R., Park, J. H., Ko, I. J., Yu, H. J., Lee, C. Y., Kwon, J. H. Organic Electronics, 2019, 70, 1–6.
    63. Chou, P.-Y.; Chou, H.-H.; Chen, Y.-H.; Su, T.-H.; Liao, C.-Y.; Lin, H.-W.; Lin,W.-C.; Yen, H.-Y.; Chena, I.-C.; Cheng, C.-H. Chem. Commun., 2014, 50, 6869—6871.
    64. Chen, Y.-H.; Lin, C.-C.; Huang, M.-J.; Hung, K.; Wu, Y.-C.; Lin, W.-C.; Chen-Cheng, R.-W.; Lin, H.-W.; Cheng, C.-H. Chem. Sci., 2016, 7, 4044–4051.
    65. Di, D.; Yang, L.; Richter, J. M.; Meraldi, L.; Altamimi, R. M.; Alyamani, A. Y.; Credgington, D.; Musselman, K. P.; MacManus-Driscoll, J. L.; Friend, R. H. Adv. Mater. 2017, 29, 1605987.
    66. Nalaoh, P.; Sungworawongpana, N.; Chasing, P.; Waengdongbung, W.; Funchien, P.; Kaiyasuan, C.; Sudyoadsuk, T.; Promarak, V. Adv. Optical Mater., 2021, 9, 2100500.
    67. Chen, C.-H.; Li, Y.-S.; Fang, S.-C.; Lin, B.-Y.; Li, C.-Y.; Liao, Y.-C.; Chen, D.-G.; Chen, Y.-R.; Kung, Y.-C.; Wu, C.-C.; Lin, Y.; Hung, W.-Y.; Chiu, T.-L.; Lin, C.-F.; Li, E. Y.; Guo, T.-F.; Lee, J.-H.; Wong, K.-T. and Chou, P.-T. Adv. Photonics Res. 2023, 4, 2200204.
    68. Jiang, H.; Li, H.; Jin, J.; Bodedla, G. B.; Tao, P.; Ma, D.; Wong, W.-Y. J. Mater. Chem. C, 2023, 11, 6438.
    69. Ding, Z.; Ma, B.; Zhou, Z.; Zhang, S.; Pan, J.; Zhu, W.; Liu, Y. Dyes and Pigments, 2023, 216, 111346.
    70. Yokoyama, D. J. Mater. Chem., 2011, 21, 19187.
    71. Schmidt, T. D.; Lampe, T.; Sylvinson M. R., D.; Djurovich, P. I.; Thompson, M. E.; Brütting, W., Phys. Rev. Appl. 2017, 8, 037001.
    72. Frischeisen, J.; Yokoyama, D.; Adachi, C.; Brütting, W., Appl. Phys. Lett. 2010, 96, 073302.
    73. Rivnay, J.; Mannsfeld, S. C. B.; Miller, C. E.; Salleo, A.; Toney, M. F. Chem. Rev., 2012, 112, 5488−5519.
    74. Wang, W.-C.; Chen, S.-Y.; Yang, Y.-W.; Hsu, C.-S.; Tajima, K. J. Mater. Chem. A, 2020, 8, 6268.
    75. Osaka, I.; Takimiya, K., Polymer 2015, 59, 1-15.
    76. Lee, Y.-T.; Tseng, P.-C.; Komino, T.; Mamada, M.; Ortiz, R. J.; Leung, M.-k.; Chiu, T.-L.; Lin, C.-F.; Lee, J.-H.; Adachi, C.; Chen, C.-T., ACS Appl. Mater. Interfaces 2018, 10, 43842-43849.
    77. Lee, J.-H.; Huang, J.-X.; Chen, C.-H.; Lee, Y.-T.; Chan, C.-Y.; Dzeng, Y.-C.; Tang, P.-W.; Chen, C.; Adachi, C.; Chiu, T.-L.; Lee, J.-H. and Chen, C.-T. Adv. Optical Mater. 2023, 11, 2202666.
    78. Chou, P.-Y.; Chou, H.-H.; Chen, Y.-H.; Su, T.-H.; Liao, C.-Y.; Lin, H.-W.; Lin, W.-C.; Yen, H.-Y.; Chen, I.-C. and Cheng, C.-H. Chem. Commun., 2014, 50, 6869-6871.
    79. Tierce, N. T.; Chen, C.-H.; Chiu, T.-L.; Lin, C.-F.; Bardeen, C. J. and Lee, J.-H. Phys. Chem. Chem. Phys., 2018, 20, 27449-27455.

    無法下載圖示 全文公開日期 2034/01/24 (校內網路)
    全文公開日期 2034/01/24 (校外網路)
    全文公開日期 2034/01/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE