簡易檢索 / 詳目顯示

研究生: 陳嶒永
Peter - Jonathan
論文名稱: PMMA-TiO2複合材料之射出成形於功能性二次光學元件之透光性和熱傳導性分析
Analysis on Light Transmission and Thermal Conductivity of Functional Secondary Optical Elements by Injection Molding of PMMA-TiO2 Composites
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 黃忠偉
Allen Jong-Woei Whang
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 130
中文關鍵詞: 高分子複合材料射出成形內部全反射菲涅爾透鏡主要光波長轉換熱傳導
外文關鍵詞: Polymer composites, Injection molding, TIR Fresnel lens, Dominant wavelength shifiting, Thermal conductivity
相關次數: 點閱:275下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為聚甲基丙烯酸甲酯(PMMA)與二氧化鈦之塑膠材料於內部全反射菲涅爾二次光學元件應用於LED照明影響,PMMA-TiO2複材是以雙螺桿押出機混合造粒,另以熱重分析儀(TGA)與熱示差掃描卡量計(DSC)觀察材料耐熱性與熱性質變化,並使用Moldex3D模擬TIR-菲涅爾二次光學元件之模具設計與射出成形。幾何形狀量測翹曲變形及光學測試,如照度檢測與光譜量測等。可得適當射出成形參數之影響,目前研究設定為保壓壓力63 MPa與射出速度3 mm/s,因本研究所使用TiO2已先改質為全光譜適用且用來吸收藍光與綠光,另當LED光經過TIR-菲涅爾結構會使出光面更均勻。從照明試驗結果中顯示,隨著TiO2濃度增加,光強度下降。在此研究中照度值42 lux和投影角7.99度。由藍光與白光LED燈源進行積分球照明檢測使其主波長轉換。透過平板量測UV-Vis量測光的亮度隨著TiO2的濃度增加而降低,當越高的TiO2濃度,吸收越多的綠光和藍光,使主光波長轉換。TiO2添加TIR-Fresnel透鏡中對熱傳導影響研究之應用。結果顯示TiO2濃度從0.01% 增加至0.1%,其熱傳導係數從5.6%提升至13%。但對於光學及熱性質要求,增加5.6%的熱傳導性可以降低3.65%的工作溫度,此研究結果顯示PMMA-0.01%TiO2 應用於LED光有更好的照明且減少藍光透光。


    This study aims to investigate the dominant wavelength shifting and thermal conductivity effects of titanium dioxides (TiO2) nanoparticles in Poly(methyl methacrylate) matrix of Total Internal Reflective (TIR) – Fresnel Lens for LED illumination application. PMMA-TiO2 composites has been mixed using twin screw extruder. Then, Thermogravity Analysis (TGA) and Difference Scanning Calorimetry (DSC) are used to obtain the maximum melted temperature (Tmelt) and glass transition (Tg) temperature of PMMA-TiO2 composites, respectively. The mold design of TIR-Fresnel lens is simulated by Moldex3Dc software and the lens is manufactured by injection molding process. Warpage measurement, illumination testing, and integrating sphere are conducted to obtain the appropriate injection parameters of injection molding, including packing pressure about 63 MPa and injection speed around 3 mm/s. This TiO2 has been modified to adapt for white light spectrum and used to absorb the blue light significantly and green light moderately. Moreover, the uniform output can achieve through the TIR-Fresnel lens of LED lighting. Illumination testing shows that as the TiO2 concentration increases, the light intensity drops. PMMA-0.01% TiO2 is the best composition with performance of 42 lux and 7.99° projection angle. In this study, the illumination testing results have been verified by integrating sphere test to observe the dominant wavelength shifting with white and blue LED. The UV-Vis measurement is also conducted to have fundamental result of light transmittance out of flat panel lens. It shows that the higher TiO2 concentration absorbs the blue and green light which cause the light shift the wavelength. Last but not the least, thermal conductivity test is also conducted to investigate the effect of TiO2 on TIR-Fresnel lens application. It shows that as the concentration of TiO2 on PMMA increases, the thermal conductivity increases from 5.6% up to 13% as the composition 0.01% - 0.1% of TiO2. For both optical and thermal purposes, the PMMA-0.01% TiO2 is the suggested composition with increasing thermal conductivity by 5.6% and reducing working temperature by 3.65%. Results of this study can be applied in LED illumination for better performance and also reducing the blue light concentration.

    TABLE OF CONTENTS ACKNOWLEDGEMENTI ABSTRACTII 中文摘要III TABLE OF CONTENTSIV TABLE OF FIGURESVIII LISTS OF TABLESXIV CHAPTER 1 INTRODUCTION1 1.1 Background1 1.2 Research Objective and Scope3 1.3 Approach3 1.4 Research Framework4 CHAPTER 2 LITERATURE REVIEW6 2.1 TIR Lens Design6 2.2 Polymer Nanocomposite12 CHAPTER 3 FUNDAMENTAL THEORY18 3.1 Overview of Optics18 3.1.1 Reflection18 3.1.2 Refraction19 3.1.3Total Internal Reflection19 3.1.4 Light Wave20 3.1.5 Scattering21 3.2 Polymer Matrix Composites with TiO222 3.2.1Poly(methyl methacrylate) (PMMA)24 3.2.2Titanium Dioxide (TiO2)25 3.3.2Refractive Indices and Densities of Nanocomposites Frequently Used in Optical Application26 3.3 Injection Molding Process27 3.3.1Molding Window27 3.3.2Process Model28 3.4 Summary on Fundamental Theory31 CHAPTER 4 COMPOSITES MATERIAL AND EXPERIMENTAL SET-UP32 4.1 PMMA-TiO2 Composites Material32 4.1.1 PMMA-TiO2 Composites Mixing33 4.2 PMMA-TiO2 Composites Testing35 4.2.1 Scanning Electron Microscope35 4.2.2X-ray Diffraction37 4.2.3 Thermogravimetry Analysis (TGA)39 4.2.3Different Scanning Calorimetry (DSC)41 4.3 Mold Design of TIR Fresnel Lens44 4.4 Injection Molding Experiment48 4.5 UV-Vis Spectrometry51 4.6 Illumination Testing and Integrating Sphere51 4.7 Thermal Conductivity Measurement54 4.8 Discussion of Composites Material55 CHAPTER 5 SIMULATION AND EXPERIMENT OF INJECTION MOLDING56 5.1 Injection Molding (IM) Analysis56 5.1.1Moldex3Dc software Analysis56 5.1.2Injection Molding Process and Short Shot61 5.2 Warpage Measurement Analysis66 5.3 Scanning Electron Microscope of Fresnel Structure69 5.4 Summary on Injection Molding Process72 CHAPTER 6 OPTICAL AND THERMAL TESTING73 6.1 UV-Vis Measurement and Analysis73 6.2 Illumination Testing and Analysis77 6.3 Integrating Sphere Measurement Test and Analysis87 6.4 Thermal Conductivity Measurement and Analysis95 6.5 Discussion on Performance Tests100 CHAPTER 7 CONCLUSION AND RECOMMENDATION101 7.1 Conclusion101 7.2 Recommendation102 REFERENCES103 APPENDIX A PMMA and PDMS UV-Vis Measurement Result105 APPENDIX B Difference Scanning Calorimetry Result106 APPENDIX C Warpage Measurement Sampling109 APPENDIX D SEM Results of Fresnel Structure and PMMA-TiO2 Composites110 APPENDIX E Illumination Testing Sampling115 APPENDIX F Integrating Sphere Result118 APPENDIX G ANSYSc 14.5 Simulation Result123 APPENDIX H Fanuc Roboshot α-15Ia Specification125 APPENDIX I PMMA Asahi Kasei Delpet 80 NH Property126 APPENDIX J Showa Denko TiO2 Data Sheet127 APPENDIX K LED128 CURRICULUM VITAE130

    1.Recycle.inc, D. Comparison Chart LED Lights vs Incandescent Light Bulbs vs. CFLs. Available from: http://www.designrecycleinc.com/led%20comp%20chart.html.
    2.Wikipedia. Light-emitting diode. Available from: http://en.wikipedia.org/w/index.php?title=Light-emitting_diode&oldid=613830871.
    3.Parkyn, W.A. and D.G. Pelka. New TIR lens applications for light-emitting diodes. 1997.
    4.Bortz, J.C., N.E. Shatz, and M. Keuper. Optimal design of a nonimaging TIR doublet lens for an illumination system using an LED source. 2004.
    5.Zhen, Y., Z. Jia, and W. Zhang, The optimal design of TIR lens for improving LED illumination uniformity and efficiency. Proc. of SPIE, 2007. 6834: p. 68342K-68342K-8.
    6.Chen, J.-J. and C.-T. Lin, Freeform surface design for a light-emitting diode–based collimating lens. Optical Engineering, 2010. 49(9): p. 093001-093001-8.
    7.Guiyung Yu, S.D., Ji Jin, Tiantai Guo, A Free-Form Total Internal Reflection (TIR) Lens for Illumination. SPIE, Seventh International Symposium on Precision Engineering Measurement and Instrumentation, 2011. 8321.
    8.Putra, A.D., Injection Molding of Total Internal Reflection Lens with Fresnel Structure for Improving Collimation of LED Illumination, in Mechanical Engineering. 2014, National Taiwan University of Science and Technology: Taipei.
    9.Hoang, V.T., Study of PC/PMMA Blends for Injection Molding of Optical Elements in LED Illumination, in Mechanical Engineering. 2011, National Taiwan University of Science and Technology: Taipei.
    10.Chen, C.C.A., S.W. Chang, and C.J. Weng, Design and fabrication of optical homogenizer with micro structure by injection molding process. 2008, Proc. SPIE. p. 705807-705807-8.
    11.Zhao, S., et al., Integral freeform illumination lens design of LED based pico-projector. Appl Opt, 2013. 52(13): p. 2985-93.
    12.Zhuang, Z. and F. Yu, Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum. Optics & Laser Technology, 2014. 60: p. 27-33.
    13.Ritzhaupt-Kleissl, E., et al., Thermoplastic polymer nanocomposites for applications in optical devices. Materials Science and Engineering: C, 2006. 26(5-7): p. 1067-1071.
    14.Imai, Y., et al., Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. European Polymer Journal, 2009. 45(3): p. 630-638.
    15.Sun, J., et al., Characterization and optical properties of sol–gel processed PMMA/SiO2 hybrid monoliths. Journal of Non-Crystalline Solids, 2007. 353(29): p. 2807-2812.
    16.Li, S., et al., Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev, 2010. 1.
    17.Espejo, C., et al., Nanocomposite films with enhanced radiometric properties for greenhouse covering applications. Journal of Plastic Film and Sheeting, 2012. 28(4): p. 336-350.
    18.Hsu, Y.-H., Research of Thermal Conductivity and Mechanical Properties of PPS Polymer Composites by Injection Molding. 2013.
    19.Newton, I., Optiks. 1952, New York: Dover Publications.
    20.Huygens, C., Treatise on Light. 1962, New York: Dover Publications.
    21.Hecht, E., Optics, 4th Edition. 2002, Pearson: San Fransisco, CA.
    22.Chen, C.C.A., Computer Aided Mold Design and Analysis. 2001: Institute of ME/NTUST.
    23.Chen, H.Y., Study on Large Area Sub-Wavelength Functional Optical Lens with Anti-Reflection Structures, in Mechanical Engineering. 2011, National Taiwan University of Science and Technology: Taipei.
    24.Gao, F., Advanced in Polymer Nanocomposites. 2012: Elsevier Science, Woodhead Publishing.
    25.Zehev Tadmor, C.G.G., Principles of Polymer Processing. 2006, Hoboken, New Jersey: John Wiley & Sons, Inc.
    26.Reyes-Coronado, D., et al., Phase-pure TiO(2) nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008. 19(14): p. 145605.

    QR CODE