簡易檢索 / 詳目顯示

研究生: 林俊呈
Jiunn-Cherng Lin
論文名稱: 具最大無奇異點軸位移空間或工作空間的六自由度並聯式機器人設計方法之研究
Development of 6-Dof parallel manipulators with maximal singularity-free joint space or workspace
指導教授: 蔡高岳
Kao-Yueh Tsai
口試委員: 黃世欽
Shyh-Chin Huang
王勵群
Li-Chun . Wang
石伊蓓
Yi-Pei Shih
郭進星
Chin-Hsing Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 119
中文關鍵詞: 六自由度並聯式機器人奇異點軸位移空間方位工作空間工作空間
外文關鍵詞: 6-Dof parallel manipulators, Singularity, Joint space, Orientation workspace, Workspace
相關次數: 點閱:287下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

無奇異點工作空間為設計機器人時一個非常重要之參考指標,尤其是對於工作空間相對較小且空間中存在複雜奇異點之並聯式機器人更為重要。本文首先探討並聯式機器人之連桿參數以及操控性指數對於無奇異點軸位移空間大小之影響,並提出方法求得具有較大無奇異點軸位移空間之六自由度史都華型並聯式機器人。所提出方法可利用局部操控性指數及一些幾何特性系統化的搜尋到具有最大無奇異點軸位移空間之最佳設計。
本文之第二部份提出藉由連續剖面上之邊界曲線求得可連續運動方位工作空間之方法,此方法可預測形成臨近剖面上邊界曲線之方程式組合因此可迅速得到一並聯式機器人之可連續運動方位工作空間。最後以所提出之新方法以及現有求得可連續運動工作空間之方法探討六自由度並聯式機器人軸位移空間大小與工作空間或方位工作空間大小以及操控性之關係。研究結果發現軸位移空間之大小並不與工作空間或方位工作空間之大小成正比,而具有較大無奇異點工作空間機器人之操控性相對較差,因此本文將研究集中於如何設計具有較大無奇異點工作空間並同時具有較佳操控性之六自由度並聯式機器人。


Singularity-free workspace is a very important criterion for the design of manipulators, especially for parallel manipulators which are well known for their limited workspace and complex singularities. This thesis first studies geometric parameters and dexterity measures that affect the size of a singularity-free joint space, and proposes methods for the development of 6-DOF Stewart-Gough parallel manipulators that have better singularity-free joint space. Using local dexterity measures and some geometric properties, a systematic method is developed to search for the design with maximal singularity-free joint space.
The second part of this work presents algorithms for determining the compatible orientation workspace of 6-DOF parallel manipulators. The orientation workspace is developed through boundary curves on two-dimensional cross-sections. Methods for predicting possible constraint equations for the boundary curves of neighboring sections are proposed to facilitate the evaluation process. The proposed methods along with an existing method for developing the compatible reachable workspace are then employed to investigate the relationships among the size of joint space, the size of reachable or orientation workspace and the dexterity of 6-DOF parallel manipulators. The results show that the workspace is not proportional to the size of the joint space, and that manipulators with a larger singularity-free workspace usually have relatively poor dexterity. Therefore, the methods presented in this work focus on how to develop manipulators with a larger singularity-free workspace and better dexterity.

目錄 中文摘要 I 英文摘要 II 誌 謝 IV 目 錄 V 圖表索引 VIII 第一章 緒論 1 1.1 文獻回顧 4 1.2 研究動機 7 1.3 論文架構 10 第二章 理論基礎 12 2.1 六自由度並聯式機器人 12 2.1.1 靜力分析矩陣 13 2.2 反位移分析 17 2.3 正位移分析 18 2.4 牛頓迭代法 19 第三章 最大無奇異點軸位移空間 22 3.1 操控性指數 22 3.2 搜尋軸位移空間 25 3.2.1 利用最佳化搜尋軸位移空間之方法 30 3.2.2 操控性指數與最大的無奇異點之連桿軸位移量 34 3.3 行列式值與最佳設計 36 3.4 小結 45 第四章 並聯式機器人之方位工作空間 46 4.1 連桿之軸位移拘束方程式 46 4.2 球窩接頭旋轉角度限制之拘束方程式 48 4.3 連桿間干涉之拘束方程式 49 4.4 產生方位工作空間的邊界 54 4.5 方位工作空間邊界曲線之轉換 63 4.6 球窩接頭與連桿干涉限制下所形成的方位工作空間 67 4.7 方位工作空間邊界曲線之求解與繪圖法 69 4.7.1邊界曲線繪圖法 69 4.7.2方位工作空間完整邊界繪圖法 72 4.7.3方位工作空間邊界之計算 81 4.8 數值範例 85 4.9 小結 91 第五章 最佳化設計 92 5.1 工作空間 92 5.1.1圓柱座標邊界繪製法 92 5.1.2 工作空間邊界曲面 94 5.1.3工作空間之體積計算 101 5.2 方位工作空間與工作空間 103 5.3 小結 108 第六章 結論與建議 109 參考文獻 113 作者簡介 118

參考資料
[1] Stewart, D., “A Platform with Six Degree of Freedom,” Proceedings of the Institution of Mechanical Engineers, Vol. 180, No. 1, pp. 371-386 (1965)
[2] Fichter, E. F., “Stewart Platform-Based Manipulator: General Theory and Practical Construction,” International Journal of Robotics Research, Vol. 5, No. 2, pp. 157-182 (1986)
[3] Kumar, V., “Characterization of Workspace of Parallel Manipulators, ” ASME J. Mech. Des., Vol.114 , pp.368-375 (1990a)
[4] Kumar, V., “Instantaneous Kinematics of Parallel Chain Robotic Mechanisms, ” ASME J. Mech. Des., Vol.114 , pp.349-358 (1990b)
[5] Gosselin, C. M., “Determination of the Workspace of 6-DOF Parallel Manipulators, ” J.of Mech. Design., Vol.112, No.3, pp.331-336(1990)
[6] Agrawal, S. K., ”Workspace boundaries of in-parallel manipulator systems, ” in ICRT, Pise, June, Vol.19-22, pp.1147-1152(1991)
[7] Merlet, J. P., “Determination of the Orientation Workspace of Parallel Manipulators, ” J. Int and Robotic Sys., June Vol.13, pp.143-160 (1995)
[8] Merlet, J. P., “Designing a Parallel Manipulator for Specific Workspace, ” Int. J. Robotics Res., Vol.16, pp.545-556(1997)
[9] Gosselin, C. M., “M. Jean, Determination of the Workspace of Planar Parallel Manipulators with Joint Limits, ” Robot and Auto. Sys., May Vol.17, pp.129-138(1996)
[10] Haug, E. J., Adkins, F. A., and Luh, C. M., “Operational envelopes for working bodies of mechanisms and manipulators,” ASME J. Mech. Des., Vol. 120, No. 2 , pp.84-91 (1998)
[11] Merlet, J. P., “Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries,” Int. J. Robot. Res., Vol. 18, No. 9 , pp.902-916(1999)
[12] Bonev, I. A., Ryu, J., “A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators,” Mech. Mach. Theory, Vol. 36, No. 1 , pp. 1-13(2001)
[13] Bonev, I. A., Ryu, J., “new approach to orientation workspace analysis of 6-DOF parallel manipulators,” Mech. Mach. Theory, Vol. 36, No. 1 , pp. 15-28(2001)
[14] Cao, Y., Ji, W., Li, Z., Zhou, H., Liu, M., “Orientation-Singularity and Nonsingular Orientation-Workspace Analyses of the Stewart- Gough Platform Using Unit Quaternion Representation,” IEEE Chinese Control and Decision conference , pp.2282-2287 (2010).
[15] Jiang, Q., Gosselin, C. M., “Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform, ” Mech. and Mach. Theory, Vol. 44, No. 6 , pp. 1281–1293 (2009)
[16] Jiang, Q., Gosselin, C. M., “Maximal Singularity-Free Total Orientation Workspace of the Gough–Stewart Platform, ” ASME J. of Mech. and Robot., Vol. 1, 034501.1-034501.4 (2009).
[17] 蘇聖富,「衡量6-DOF 並聯式機器人工作空間體積之方法」,碩士論文,國立台灣科技大學,台北 (2001)。
[18] 呂建彥,「計算六個自由度並聯式機器人工作空間體積方法之研究」,碩士論文,國立台灣科技大學,台北 (2002)。
[19] 施志玄,「以賈式矩陣決定並聯式機器人工作空間方法之研究」,碩士論文,國立台灣科技大學,台北 (2003)。
[20] 邱鈞鉦,「六自由度並聯式機器人方向性工作空間之研究」,碩士論文,國立台灣科技大學,台北 (2003)。
[21] 羅伊婷,「六自由度並聯式機器人可連續運動工作空間之研究」,碩士論文,國立台灣科技大學,台北 (2012)。
[22] Ma, O., Angeles, J., “Optimum architecture design of platform manipulator, ” ICAR, Psia, June, pp. 19-22(1991)
[23] Merlet, J. P., Gosselin, C. M., and Mouly, N., “Workspace of Planar Parallel Manipulators,” Mech. and Mach. Theory, Vol. 33, No. 1/2 , pp.7-20(1998)
[24] Zanganeh, K. E., Angeles, J., “Kinematic isotropy and the optimum design of parallel manipulators,” Int. J. Robot. Res., Vol. 16, No. 2 , pp.185-197(1997)
[25] Lopes, A, M, “Manipulability optimization of parallel structure robotic,” 2nd Portuguese Automatic Control, Portugal, pp. 243-248(1996)
[26] Gosselin, C. M., Angeles, J., “The optimum kinematic design of spherical three-degree-of-freedom parallel manipulator,” ASME J of Mech. Trans. and Auto., Vol. 111, No. 2 , pp. 202-207 (1989)
[27] Takeda, Y., Funabashi, H., Ichimaru, H., “Development of spatial in-parallel actuated manipulators with six degrees of freedom with high motion transmissibility,” JSME Int. J, Ser. Control, Vol. 40, No. 2, June, pp.299-308 (1989)
[28] Liu, X. J. Wang, J, “A new approach to the design of a DELTA robot with a desired workspace,” Int. J. Robot. Sys., Vol. 39, pp.209-225 (2004)
[29] Liu, X. J., “Optimal Kinematic design of a three translational DoFs parallel manipulator, ” Robotica, Vol. 24, pp. 239–250 (2006)
[30] Liu, X. J., Wang, J, “A new methodology for optimal kinematic design of parallel mechanisms,” Mech. and Mach. Theory, Vol.42, pp. 1210–1224(2007)
[31] Kosinska, A., Galicki, M., and Kedzior, K., “Designing and optimization of perameters of delta-4 parallel manipulator for a given workspace, ” J. Int. Robotic Syst., Vol.20 , pp.539-548(2003)
[32] Laribi, M. A., Romdhane, L., and Zeghiout, S., “Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace, ” Mech. and Mach. Theory, Vol.42 , pp.859-870(2007)
[33] Li, H., Gosselin, C. M., and Richard, M. J., “Determination of the maximal singularity-free zones in the six-dimensional workspace of the general Gough–Stewart platform,” Mech. and Mach. Theory, Vol.42, No.4 , pp.497-511 (2007)
[34] Jiang, Q. Gosselin, C. M., “Geometric Optimization of the MSSM Gough–Stewart Platform,” ASME J. of Mech. and Robot., 1, 031006.1- 031006-8 (2009)
[35] Tsai, K. Y., Wang, Z. W., “The Design of Redundant Isotropic Manipulators with Special Parameters, ” Robotica, Vol.23, No.2, pp.231-237 (2005)

QR CODE