簡易檢索 / 詳目顯示

研究生: 鄭蕙葶
Hui-Ting Cheng
論文名稱: 在多資源環境中最佳權重的加權公平排隊排程
Weighted-Fair-Queuing Scheduling with Optimal Weights in a Multi-Resource Environment
指導教授: 賴源正
Yuan-Cheng Lai
口試委員: 楊傳凱
Chuan-Kai Yang
陳彥宏
Yen-Hung Chen
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 33
中文關鍵詞: 封包排程資源分配服務品質違反機率
外文關鍵詞: packet scheduling, resource allocation, QoS violation probability
相關次數: 點閱:351下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前有愈來愈多的網路應用興起,這些應用不僅需要通信資源,亦需要運算資源,因此5G (5th generation)網路會與多接取邊緣運算(Multi-access Edge Computing, MEC)系統來結合,由5G網路提供通信資源,而由MEC來提供運算資源,然而因為各類應用會相互搶奪資源,容易造成服務品質(Quality of Services, QoS)的違反,網路切片技術雖可將資源合適地分配以避免資源間之相互搶奪,然而同時也喪失了資源共享的好處。本論文提出了一種在多資源環境中最佳權重的加權公平排隊排程的方法,稱為Weighted-Fair-Queuing Scheduling with Optimal Weights (WFQ-OW),其目的為每個應用的封包做適當地排程,使得所有封包的整體QoS違反機率最小,此方法先採用Multi-Resource Network Slicing to Minimize QoS Violation Probability (NS-MQV)中所得到之各個應用最佳資源分配,將這些資源分配量轉化成權重,再採用使用這些權重的加權公平排隊(Weighted-Fair-Queuing, WFQ)來進行排程,以達到最小化整體QoS違反機率的目標。模擬結果顯示,在模擬環境預設值的情況下,WFQ-OW演算法相較於NS-MQV和EDF (Earliest Deadline First),分別可改進19.35%和72.27%的QoS違反機率。


    More and more network applications, which require not only communication resources but also computing resources, are emerging, Therefore, 5G (5th generation) networks will be combined with Multi-access Edge Computing (MEC) systems, with 5G networks providing communication resources and MEC providing computing resources. However, because various applications will compete with each other for resources, easily resulting in quality of service (QoS) violations. Network slicing technology can appropriately allocate resources to avoid the competition among resources, but at the same time, it also loses the benefit of resource sharing. This paper proposes a weighted fair queuing scheduling method in a multi-resource environment, called Weighted-Fair-Queuing Scheduling with Optimal Weights (WFQ-OW), which aims to schedule each application's packets. This method first uses the optimal resource allocation, obtained from Multi-Resource Network Slicing to Minimize QoS Violation Probability (NS-MQV), for each application. Then these resource allocations are converted into weights, and finally Weighted-Fair-Queuing (WFQ) is adopted by using these weights to minimize the overall QoS violation probability. The simulation results show that the WFQ-OW algorithm can improve 19.35% and 72.27% of QoS violation probability, compared with NS-MQV and EDF (Earliest Deadline First), respectively, under a congested system.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VI 第壹章 緒論 1 第貳章 相關研究 4 一、多資源環境架構 4 二、多資源切片及排程方法 4 三、5G Multi-Resource Network Slicing to Minimize QoS Violation Probability (NS-MQV) 6 第參章 系統模型與問題表述 8 一、網路架構 8 二、問題定義 9 三、加權公平排程 10 第肆章 最小違反機率之排程方法 11 一、延遲分布計算QoS方法 11 二、分配量計算方法 12 三、WFQ利用最佳分配量作法 13 第伍章 實驗與分析 15 一、環境與參數 15 二、到達率的影響 16 三、服務率的影響 21 第陸章 結論與未來展望 23 參考文獻 24

    [1] Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322-2358.
    [2] Mach, P., & Becvar, Z. (2017). Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials, 19(3), 1628-1656.
    [3] Li, X., Samaka, M., Chan, H. A., Bhamare, D., Gupta, L., Guo, C., & Jain, R. (2017). Network slicing for 5G: Challenges and opportunities. IEEE Internet Computing, 21(5), 20-27.
    [4] Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A. H., & Leung, V. C. (2017). Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE communications magazine, 55(8), 138-145.
    [5] Guo, T., Zhang, H., Huang, H., Guo, J., & He, C. (2019, December). Multi-Resource Fair Allocation for Composited Services in Edge Micro-Clouds. In 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) (pp. 405-412). IEEE.
    [6] Alsenwi, M., Tran, N. H., Bennis, M., Pandey, S. R., Bairagi, A. K., & Hong, C. S. (2021). Intelligent resource slicing for eMBB and URLLC coexistence in 5G and beyond: A deep reinforcement learning based approach. IEEE Transactions on Wireless Communications.
    [7] Fossati, F., Moretti, S., Perny, P., & Secci, S. (2020). Multi-resource allocation for network slicing. IEEE/ACM Transactions on Networking, 28(3), 1311-1324.
    [8] Cheng, S. Y., Lai, Y. C. (2021). 5G Multi-Resource Network Slicing to Minimize QoS Violation Probability.
    [9] Ksentini, A., Frangoudis, P. A., Amogh, P. C., & Nikaein, N. (2018). Providing low latency guarantees for slicing-ready 5G systems via two-level MAC scheduling. IEEE Network, 32(6), 116-123.
    [10] Shu, Z., & Taleb, T. (2020). A novel QoS framework for network slicing in 5G and beyond networks based on SDN and NFV. IEEE Network, 34(3), 256-263.
    [11] Feng, L., Zi, Y., Li, W., Zhou, F., Yu, P., & Kadoch, M. (2020). Dynamic resource allocation with RAN slicing and scheduling for uRLLC and eMBB hybrid services. IEEE Access, 8, 34538-34551.
    [12] Korrai, P., Lagunas, E., Sharma, S. K., Chatzinotas, S., Bandi, A., & Ottersten, B. (2020). A RAN resource slicing mechanism for multiplexing of eMBB and URLLC services in OFDMA based 5G wireless networks. IEEE Access, 8, 45674-45688.
    [13] Ohseki, T., Morita, M., & Inoue, T. (2007, November). Burst construction and packet mapping scheme for OFDMA downlinks in IEEE 802.16 systems. In IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference (pp. 4307-4311). IEEE.
    [14] Bacioccola, A., Cicconetti, C., Lenzini, L., Mingozzi, E. A. M. E., & Erta, A. A. E. A. (2007, December). A downlink data region allocation algorithm for IEEE 802.16 e OFDMA. In 2007 6th International conference on information, communications & signal processing (pp. 1-5). IEEE.
    [15] Desset, C., de Lima Filho, E. B., & Lenoir, G. (2007, June). WiMAX downlink OFDMA burst placement for optimized receiver duty-cycling. In 2007 IEEE International Conference on Communications (pp. 5149-5154). IEEE.
    [16] Nojima, D., Katsumata, Y., Shimojo, T., Morihiro, Y., Asai, T., Yamada, A., & Iwashina, S. (2018, June). Resource isolation in RAN part while utilizing ordinary scheduling algorithm for network slicing. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring) (pp. 1-5). IEEE.
    [17] Wang, G., Wang, L., Chuan, J., Xie, W., Zhang, H., & Fei, A. (2019, July). LRA-3C: Learning Based Resource Allocation for Communication-Computing-Caching Systems. In 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 828-833). IEEE.
    [18] Chien, H. T., Lin, Y. D., Lai, C. L., & Wang, C. T. (2019). End-to-end slicing with optimized communication and computing resource allocation in multi-tenant 5G systems. IEEE Transactions on Vehicular Technology, 69(2), 2079-2091.
    [19] Hwang, R. H., Lai, Y. C., & Lin, Y. D. (2021). Offloading Optimization with Delay Distribution in the 3-tier Federated Cloud, Edge, and Fog Systems. arXiv preprint arXiv:2107.05015.

    無法下載圖示 全文公開日期 2024/10/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE